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Scenario for the onset of space-time chaos
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The onset of space-time chaos is studied on the basis of a Galilean invariant model that exhibits the essential
characteristics of the phenomenon. By keeping the linear part of the model extremely simple, one has better
than usual control of the classes of available stationary solutions. These stationary solutions include not only
spatially periodic but also a large set of spatially chaotic solutions that can be characterized by words of a
symbolic language. The main proposition of this paper is that space-time chaos in Galilean invariant models
can be understood in a qualitative fashion as an orbit in the space of functions that visits words in this language
in a random fashion. The appearance of topological defects and other “signatures” of space-time chaos are a
natural consequence of this dynamics. Finally, we construct a simple demonstration of this scenario.
[S1063-651%98)07204-3

PACS numbdss): 05.45+b

I. INTRODUCTION but whose analytic structure is sufficiently simple to allow a
reasonable understanding of the classes of solutions that are
The study of space-time chaos is hampered by the faavailable. This will allow us to classify families of stationary
that it is a phenomenon that appears in systems described layd time-dependent solutions. More importantly, we will de-
partial differential equationéPDES. In comparison, tempo- velop a picture that describes how the orbit in function space
ral chaos is adequately described by ordinary differentiakisits these solutions much like hyperbolic fixed points are
equations. For the latter there is a well-established qualitativeisited in low-dimensional dynamical systems. What comes
theory that forms a convenient and solid basis for the deeut is thus a qualitative picture of the onset of space-time
scription of temporal chaos. The lack of a qualitative theorychaos and an understanding of how some of the signatures of
of PDEs confined much of the theoretical work on spacethis type of chaos appear as a consequence of the dynamics
time chaos to numerical simulations of model equationsin function space. In some sense the emerging picture is
Even though there has been much progress in relating basieminiscent of phase-space orbits of dynamical systems, with
symmetries of physical systems to the type of model equathe stationary and the time-periodic solutions being organiz-
tions that need to be studidtdnormal forms™), the actual ers of complex behavior. We believe that similar pictures are
understanding of the onset of space-time chaos and the chavailable in standard models of space-time chaos with the
acterization of what happens after the onset did not exceedsame symmetries, but they are harder to discern because of
descriptive mode. Signatures of space-time chaos, such #se higher degree of complexity. The structure of this paper
topological defects and disordered cellular patterns, becams as follows. In Sec. Il we present the model that will be
surrogate to the phenomenon itself, with descriptions such adiscussed in the rest of the paper. After specifying the essen-
“defect mediated turbulence[’l] and “spatiotemporal inter- tial symmetries and features of the dynamics, we propose a
mittency” [2]. generalized equation that reflects all these properties but
Popular models to analyze space-time chaos have beevhich has only one or two linearly unstable modes. Al-
the Ginzburg-Landau and the Kuramoto-Sivashinsky equathough infinitely many modes appear in the observed dynam-
tions. Some important work has been done to map the dyics, the simplicity of the linear operator is the key to our
namical behavior in such models and to discuss the existenaility to develop a deeper understanding. In Sec. Il we
of attractors. Examples of such work can be found, e.g., irbegin the discussion of the stationary solutions of our model.
[3-5]. The main difficulty in understanding the onset of The aim is to understand as many stationary solutions as
space-time chaos is that even these relatively simple equgossible since later we describe the dynamics as being orga-
tions lead to such a huge variety of phenomena that it is hardized by these stationary solutions. In Sec. Il we focus on
to disentangle clean scenarios. Typically there is such a conthe family of solutions whose typical wavelength is much
plex array of dynamical phenomena that appear concurrentlgmaller than the size of the system. We show that there is an
that they tend to obscure the essential issues related to spadefinity of such solutions and that they can be organized with
time chaos. Even the definition of space-time chaos is nathe help of a symbolic grammar. With this device we dem-
entirely obvious. In some sense, the simplest models thainstrate that the system has spatial positive topological en-
have been used are too complicated. It becomes necessaryttopy in the sense that the number of available stationary
simplify further with the hope that such a simplification solutions increases at least exponentially with the size of the
would lead to more feasible analysis. system. After some analysis of the spatial bifurcations of
The main aim of this paper is to propose such simplifiedthese stationary solutions we turn in Sec. IV to the discussion
models. We will construct a model that enjoys the same symef a family of solutions whose typical wavelength is of the
metries as some of the popular models of space-time chaosrder of the system size. We find two solutions in this family
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and we discuss their stability under temporal perturbations. The four symmetries place restrictions on the possible
This stability analysis calls for some special tricks sinceforms of the linear operator. We choose the eigenfunctions of
there exist infinitely many modes that are marginally stablethe translation operator as the basis for the function spiace
From the conceptual point of view of describing spatiotem-A sufficient condition for the linear operator to ensure Gal-
poral chaos, Sec. V is the central section of this paper. Iiean symmetry is

attempts to offer a comprehensive picture of the dynamics in

qualitative terms using the knowledge of the stationary solu- L(0)=0 2.7
tions and monitoring the orbit that moves between them in ] )
function space. In some sense the emerging picture is a geAld parity requires
eralization to function space of the common picture in low-

dimensional dynamical systems. To demonstrate these ideas,

we construct a simple example in which it is easy to identinye also requirdJ (x,t) to be a real field. In this pape{ ]is

the spatial structures that are being revisited by the temporgurely dissipative sd (k) is a real operator. This class of

solution. It is possible to track a series of bifurcations tha onlinear models conserves antisymmetry and our study is
connect the bas'”? of attraction of temporally unstable SOIuFestricted to the subspace of odd functions with periodic
tions of the type discussed in Secs. II-IV. boundary conditions

L(—k)=L(k). (2.9

IIl. MODEL U(x+£,0)=Ux,1),Ux,)=—U(=xt). (2.9

One of the important insights achieved in the study of

. g . . In order to have a nonvanishing solution for any time
space-time chaos is that given some symmetries, the dynar‘Bf1

. f the phvsical fields. aft it | is d e needs either external forcing or unstable mdgesitive
Ics of he physical Tields, after appropriaté scaling, 1S e'eigenvalue)ain the linear spectrum to inject energy into the

scribed by universal equations. The structure of the equationg ctem and stable modésegative eigenvalugso dissipate
is completely determined by the symmetries of the physm;ﬁéergy and stabilize the solution. In this paper we will not

system. In this paper we W'I.I be concerned with model €qUagiscuss models with external forcing, so the models that we
tions |n'one.spajual dimension that respect fpur SYMMEMNes; rq interested in must have unstable and stable bands. We fix
translation in time (—t+7), wranslation in space X( o gcaling ink space such that the boundary between the
—x+a), parity [U(x,t)——-U(=x,1)], and Galilean sym- two bands is positioned &t= 1. Two additional length scales
metry appear in the probleni) the system size£ or the k-space
grid sizeAk=2mx/£ and(ii) k.4 Or the real-space grid size
AX=7/Kpax-

A general form of a dissipative, first order in time, source- Known models of the class discussed 2above are the
less scalar field model that obeys these symmetries is Michelson-Sivashinsky equat|(_)hL(k)=|k| —k?] and the

Kuramoto-Sivashinsky equation[L(k)=k?>—k*]. The

U(x,t)—U(x+ct,t)+c. (2.1

U (X, 1) =LIU(X,t) ]+ MU(x,1)], Kuramoto-Sivashinsky equation is a well-known example
possessing ordered and spatially chaotic stede&-§. The
(x,1) e RIXR, , (2.2  spatiotemporally chaotic state is characterized using two dif-
ferent languages. In the statistical approach one characterizes
where the nonlinear operator is this state by its long-wavelength average spectibfg|. The
other approach looks at the short-wavelength cellular struc-
MU(X,t)]=U(x,t)d,U(x,1). (2.3  ture [k~O(1)] and at the topological defects that appear

together with the ordered structure. These two descriptions
The linear operato[ ] can be represented in the function express two aspects of one single phenomenon. Any attempt
space of its eigenmode® (x). We denote this function to understand space-time chaos should deal with both
space byi/ and a vector in/ by U(k) (where the indexk ~ branches of the spatial spectrum.

takes on discrete or continuous values; also see helbe The analysis of the Kuramoto-Sivashinsky equation is

spectrum of the linear operator is denotedLk): complicated for two reasons. Owing to the large number of
unstable modeg~O(£)] [10,11 the space-time picture

L[&(X)]=L(k)&(x). (2.9 seems stochastic with complex dynamics that involves tip

splitting (in one spatial dimensigror creation and annihila-
A solution (orbit) in function space will be the time- tion of topological defectsin higher dimensions The sec-
dependent vector ond reason is the lack of controlled transition from the or-
dered phase to space-time chaos. The only control parameter
of the Kuramoto-Sivashinsky equation is the system $ize
In order to have control over a system with many degrees
of freedom we decide to generalize the possible linear opera-
where the asterisk denotes the complex conjugate. The opers £[ ] to include integro-differential operators, i.e., we re-
eration of the linear operator in real space is expressed bylax the demand of locality in space. We suggest and study a
model with only two linearly unstable modes as a simplified
- ok model that contains the important features of the Kuramoto-
E[U(x,t)]=J dkdy®(x)L(K)U(y.D&(y). (2.6 Sivashinsky equation. In this model only two spatial modes

U(k,t)=f dx U(x,t)ef (x), (2.5
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041 analysis of the simplest solution of this type. This type of
ozl solution has already been discovered in the context of the

) | . Kuramoto-Sivashinsky equatidi], but there one has a band
%% 02 04 06 08 1Y 12 0.0;0.2 04 06 o.sk' X 12 of such solutions.

1 0
-0.2
A. The cellular solution
0.4}
Consider a long-wavelengttk{-kgy) periodic cellular so-
"0'6_Kuramoto-Sivashinsky Two mode lution of model(2.2) and(2.10 of the form
-0.8L
. o Un(x)= >, iape™, a  =-a (3.
FIG. 1. Linear spectrum of two Galilean invariant models. h &, on ' -n n- :

at the two extremes of the unstable band are unstable, whilgecause of the Galilean symmetry we may tag=0.)
all other modes in the unstable balikfi<1 are marginalsee  when Eq.(3.1) is substituted into the model equation, an
Fig. 1). In other words, infinite set of coupled nonlinear algebraic equations is gen-

ad([k|—ko)+B8(lk|—ky) if |k|<1 = (k;<<ko)
L(k): k2_k4

erated. To enable analytic calculations, we reduce the num-
ber of degrees of freedom in order to find an approximate
if |kl=1. solution to this set of equations. We anticipate that the am-

(2.10 plitudes of the linearly stable modes decay exponentially
with their spatial frequency, and by disregarding the short-
This model has three principal control parametesss, and  wavelength modes we form a finite set of equations. In par-

the minimal wave numbeAk or the system sizeZ. One ticular, assumingas|<|a,;| and choosinga, to be purely
control parameter(a) gives us control over the short- real (antisymmetric solutionwe find
wavelength part of the spectrum of the solutions of the

model, while the other control parametg?) enables us to a;=2va[(2kg)?—1], (3.28
control the long-wavelength part of the spectrum. In the fol-

lowing sections we will show how by varying the control @

parameters the modé2.2) and (2.10 exhibits ordered pat- a=— ko' (3.2b

terns, spatial chaos, temporal chaos, and space-time chaos.
Throughout the text we will point out similarities between

. > . ) If we extend our assumption {@a <l|a,|(n=1) thena
solutions of our model and of other Galilean invariant mod- P @[ <[an( ) n

depends only og,, | <n, and a recursive formula f@a;,, can

els. be easily found:
Il. A FAMILY OF STATIONARY SOLUTIONS 1 1 "il
OF THE FIRST KIND Anz=s 7~ - 3 a8, n>2). (3.2
n 2(nk0)—(nk0)3|:1 1%n—1 ( ) ( Q

Any study of a dynamical system should start with an
analysis of its fixed points, and in our case, these are th& comparison with a numerical simulatigfig. 2) confirms
stationary solutions. The first family of stationary solutionsthe validity of this construction.
that we discuss depends mainly on the value of the parameter The solution(3.2) is a fixed point in the phase spabge

a. Qualitatively all these solutions have strong spectral comThe issue of stability of these solutions requires in principle
ponents withk=k, and its subharmonics. To understand thethe study of infinite-dimensional matrices. The reason is that

nature of the solutions in this family we begin with the the basic solution(3.1) contains infinitely many Fourier

T T T v ] 4 T T T

10 x - Analytic —

2

1k al - . u(x)
0 20 40 60 80

X

FIG. 2. Stationary cellular solutiofk,=0.93, =0.7). Left: comparison of the numerical and analytical spectily(k)|. Right:
Un(X). Inset: graph otJ,(x) vs —d,Un(X) (dashed linelJ’=0).
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FIG. 3. Stability diagram for the time-independent cellular solutigyfx). Left: stability against perturbations at spatial frequefxy
#k, (kg=0.93). One eigenvalue crosses the imaginary axis on thedii®;k,). The line has been calculated numerically using seven
modes a_3,...,a3). Right: stability against perturbations @t=k; (k,=0.98,k;=0.03.

modes and the perturbations are coupled to all these moddsvery solution is characterized by a triplet of integers
We show in Appendix A that the general form of a pertur-(m,s,p), wherem=| s/kq | is the number of linearly non-
bation is stable modes in the rande= (0,1), s is the number of sub-
harmonics in the rangee (0kg), andp is the periodicity of
the solution defined as the number of zeros of its derivative
dxU(X) in the interval[ x,x+s(m/Kg)]. The triplet of inte-
gers corresponding to the solutidh,(x) is m=s=p=1.
whereQ e[0ko). As before, due to the exponential decay of ~AS an example we will study the case=3. We start with
high_frequency modesl one can Sthe Appendix Athat s=3, i.e., 3/4 k0< 1. The infinite set of equations is trun-
finite-dimensional approximations are sufficient for a propercated beyond the first stable moblgs. The justification of
stability analysis. The results are presented in Fig. 3. Stabilthis truncation will be checked after the calculation of the
ity can be discussed with respect to several parameters aff@efficients of the first four modes. The equations for the
the most important ones af@ and . We conclude thati) ~ four modes are
the system is stable against perturbations in the range
|Q|<1—kq and (i) the neutral curvgdenoted below by b2zt Dayahasat Dayhas=0, (3.59
a1(Q;kp)] has an extremal valuer.,, and the system is
stable against any perturbation fer> a,(kg). The system
becomes unstable again above a second branch:
a>ay(Q;ko) [see Eq(A8)].

WhenQ=k; we add the contribution df (Q)= 3 to the Kob1/a(b2/3—D4s3) = abgs, (3.50
stability matrix. Numerical calculations show that the eigen-

v(x,1)=eMel@> iy einkox, (3.3
n

1
5 bf/s— baygbz—bad2=0, (3.5b

values are in the negative half plane, wher aq(kq,kg) 10 (4

and B8< Bo(a;ky,Kp), as can be seen in the example in Fig. §k°(b1’3b3’3+ 2 b2/3)_|‘(§k0 byss- (3.50

3. We conclude that the fixed poitt,(x) is stable when

a> aeg(Kg) and B< Bo(a;kq,kp). An additional assumption that will be used to solve Eq.

(3.5b is that byb,s is much smaller than the other two
B. The family of solutions of the first kind terms in that equation. A solution of the set of equations is
The spectrum of the eigenvalues of the trivial solution 4 \2 a \2
U(x)=0 is equal toL(k) [Eg. (2.10]. WhenB=0, there is b= \/a (gko) -1 —(8—ko) , (3.63

one unstable eigenvalue=L (ko) = «. Therefore, the cellu-
lar solutionUp(x) bifurcates fromU(x) =0 ata=0. In ad-
dition to the unstable eigenmod& o there is a band of bmzi' (3.6b
marginally stable eigenmode&*, ke (0,1). Ak eigenmode 8Kko
can be nonlinearly unstablekfs=k,, wheres is an integer.
Then, a periodic solution can bifurcate frdg{x) =0. In this
subsection we will see that the cellular solutidp(x) is just
one member of a family of antisymmetric solutions of the
form It is easy to see that this solution exists for 3M,<1 and

. that the supplementary assumption holds when

4 .
U (X)= ib, elkx | —_p (3.4 a<18L(5ko)|. At these values ofr the amplitude of the
10 n;oc nim n/m - (39 higher modes r{>4) is indeed negligible compared to the

1
/5= > D1z, baz=—3bys. (3.60
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FIG. 4. Left:U,(x) at(a¢=0.21,ky=0.93 and (5= m=3). Right: two stationary solutior{at the same values of andkg): U(x) (outer
line) and the period-3 solutiofB8.6) (inner line.

four first modes. The full solution has been calculated nu{3.6) is k, and the periodicity ip=3 (see Fig. 4, while the

merically and it is seen in Fig. 4. principal spatial frequency of the new solutionik,, so its
In general, whers/(m+1)<ky<s/m (s andm are inte-  periodicity isp=2.
gers ands<m), we look for a solution witrs subharmonics. The m=3 solution (3.6) has a special symmetry in the
In the examplem=3, there are solutions whes+=3 and 1, limit «—0: It is symmetric around th&l axis (U’ =0). In
but there is no solution whes 2. other words,U(x) is an eigenfunction of the antisymmetric
Equation (3.5) has yet anothes=3 solution, which is translation operatoR,[ ] with an eigenvalue. =1, where
approximately R, ] is defined by
2
b1/3:— 27T S
3 RIUX)]=—-U| x+——=|. (3.8
ko n
2 a2 1 Before we give a general description of the family(x),
Daz=—b13, bas=—5——F7 - (3.7 we will briefly present a second exampte:s m=5. (The full
3ky (4 X X L ! N
L| =k calculation of this example is given in Appendix)B-our
3 different solutions of this example are seen in Fig. 5. Two

solutions are eigenfunctions &,[ ]. Two additional solu-
This approximation holds for<L(3ko). [WhenL(3ko)=0  tions U(x) and U(x) can be paired such that
this solution coincides with then=4, s=3 solution and for RZ[U(X)]zu_(x). The periodicity of all these solutions is
intermediate values df(3k,) there is an intermediate solu- equal top=5. In addition, there are othan=5 solutions
tion that cannot be developed in powers @l The main  with lower periodicity,p=4 andp=3 [see Eq(B2b)]. It is
difference between that solution and the previous@® is  very important for our understanding of the set of stationary
the periodicityp. The basic spatial frequency of solution solutions to observe that after appropriate scaling, the four

0.005 002 0.02 002
0.000} 1 o0of 1 o000p 1 o000}
-0.005 -0.02 -0.02 -0.02
x x x x
-t 1 '} 1 w't 1wy
u u u x

FIG. 5. Four solutions at=0.0001 k,=0.93 and (s=m=5). Upper:U,(x). Lower: the graphs at théJ,U") plane. The two leftmost
figures are the solutiond®1); the two rightmost figures are the solutiofi7).
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FIG. 6. Time-independent numerical solution of model equaties.1.2, 3=0.03, k,;;=0.053, k;=2Kin, and ko=17Kn. Left:
numerical solutiorlJ (x). Right: curve ofU(x) vs —d,U(X).

solutions of Fig. 5 look very similar and, in particular, they  Given the above rules, it is easy to construct the dictio-
“start” with essentially the same derivative at the beginningnary of all possible expressions with given periodicity. For
of the period. example, the reader can verify that there are exactly four
solutions withp=5, whenm=5, namely, those shown in
Figs. 2 and 4.

Having completed the examples, we turn to the evaluation

The discussion of the qualitative nature of the solution |Sof the number of available antisymmetric solutions of peri-
facilitated by the introduction of a symbolic language with aodicity p. We will show that this number grows exponen-
one-to-one correspondence between words in the languaggily with p, in a scaling limit wherex gets smaller as the
a.nd SO|uti0nS Of the firSt k|nd Since we deal W|th |nf|n|te|y required periods get |arger_ The exponent of this law of
many degrees of freedom, the existence of such a languagedgowth can be interpreted as the topological entropy that
not obvious. Its usefulness in classifying the solutions an@haracterizes the spatial complexity of stationary solutions.
ordering them in logical way is immense. In particular, theThese solutions form the backbone on which our understand-
symbolic language will allow us to demonstrate the existencqsng of spatiotemporal chaos is based.
of a pOSitive tOpOlOgical entropy of thIS fa.m”y of SO|uti0nS. We end this subsection by Counting the number of solu-

Looking at the graphs in thel(,U") plane(Figs. 4 and  tions accommodated by the symbolic language. In the next
5), we see that the orbits move periodically from the left halfsypsection we will argue that they all existifis sufficiently
plane U<0) to the right half planel{>0). We denote by gsmall.
the symbold. , (R;) a curved line segment in the lefight) The number of antisymmetric expressions of periodipity

half plane that crosses thd’=0 line 2n+1 times. This s equal to the total number of expressions of periodipi8:
means that there arelittle loops before the orbit returns to

the valueU = 0. Any stationary solution of the first type can :

C. The symbolic language and the topological entropy

be written as an expression in this language. The expression N _lpEBJ D p—22 i 1
for the U (x) solution is LoRg)’!, where the integej just P A i -1 =1 = , (310
..... | i

counts the periodic repetitionifig. 2). In the usual way, we
are interested in “prime periods” and hence only wilitgR .
in this case. The expression for the antisymmetric solutiorwhere Pi,...i, is the normalized permutation number
with m=3 of Fig. 4 isL,R;. Similarly, the orbits of Fig. 5 5

are coded by ,Ry, LoRsLoRoL 1Ry, LaRoL1R,LoR,, and Pi,.... il__Pil ..... i|/“ and Pil""_’il is the number of identical
L;RoLoRoLoR; . Because of translation invariance, the orbit Permutations of the set,,....i}. _

described byR;L ; coincides with the one described byR; _ The maximum values of thi is determined by the con-
(and similarly for any cyclic permutation of any cade dition 2Xij<p—1I. N, is bounded from above by the number

Our assertion is that, for sufficiently small>0, any ex- of binary numbers op digits and it is bounded from below

pression of the fornﬂiLniRni’ is realized as a stationary by the number of binary numbers of2 digits. Therefore,

. ' . S .~ Ny increases as‘®”, where 1/2<¢,<1. Computation of the
solution of the first kind. The periodicity of such a solution is firpstl elem:nfs oSN s\;]vows that & putat
P

p=>, (nj+n/+1). (3.9 Np=0.464x 20.55%, (3.1
I

In fact, it will be shown below that this family of solutions
Clearly, for such a solution to exish, must be smaller than undergoes a rich multiplicity of cascades of bifurcations that
or equal tom, the number of unstable modes. In Fig. 6 we give rise to a much larger number of solutions. The implica-
show an example withp=m=17 and with the code tion with regard to topological entropy will be discussed
RoL gR3L gRoL 1RoLgRoL gRoL gR1LoR1L3RgL . there.
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D. Demonstration of the existence ofN,, solutions
of the first kind

We will examine, for smalk, the general solutiobd,(x),
characterized byn ands [see Eq(3.4)]. We will argue that,
generically, in a system of siz€=27m there existN, [see
Eq. (3.11)] stationary solutions of periodicitg=m.

As explained in Sec. Il A, for analytic purposes it is suf-
ficient to consider explicitly only the modes whaosdies in
the interval[0,2]. We will argue that the amplitudes of the 4+ —
modes in this group do not scale uniformly with the bifurca- —- . : x
tion parameters. Defining a small parameter/a we will o203 "
split the modes into one group whose amplitude scales like £, 7. Left: schematic bifurcation diagram of the ) at
€” and other groups whose amplitude is smaller, of ordem=4. Right: solution(7) at x=0 (upped and w=1 (lower). The

higher thanv. The appropriate value of will be determined  crosses denote the discrete soluti8r20: y=(0,1,0,0,1,1,0,1).
later. To ordere®” we work with the ansatz

O W NN L=
o\/c‘ s
O o s
%
i

matrices. In other words, tHéh mode of the discrete Fourier

€'Cp, 0<ns=m transform ofU2(xj) is equal tocM'(0)c, wherec is the
b= e’*ld., 0<n=m, c,=0 (3.12 discrgte Fourier transform cbj(xj). Accordingly, the vector
) equationg(c;0)=0 can be written in real space as
e’d,, m<n<2m.
1\ 7w s
When this ansatz is substituted in the mog&p) and(2.10 I U%(x))]1=0, Xj=|j+ 5) Cm
one finds that the lowest-order equations depend only on the 0
nonlinear operator. Therefore, these amehomogeneous UXjrm)=—U(X)), —=<j<o, (3.18

equations of ordee?” and they can be written as quadratic

forms where the operata#, is defined in Fourier space by

cM'c=0, I=1,...m, (3.13

wherec is anm component vectord),,=c,, and theM' are

ax[uz(xj)]=f dkik}h) e X u?(x,).  (3.19

mXxm matrices

1 ..
M:j:§(5i+j,|—5i—j,|_5—i+j,|) (i,j,1=1,...m).
(3.149

The set of equation$3.13 can be written as a singlm
component vector equation
$(c)=0, (3.19

where ¢,(c)=cM'c.

Equation(3.18 has 2" solutions, which can be written as
U(xj)=A[2y(x;) —1], (3.20

where y(x;) is a binary digit,y(x;) €{0,1}, and A is an
arbitrary amplitude. So a solution of E@.18 is represented
by a stringy of binary digits such thaty);=y(x;). The
simplest example imn=1. Thean(Ol= 0 and the only non-
trivial antisymmetric solution is/=01. This is theUy(x)
solution.

In Appendix C we show that if there is a solution to the
m—1 equationse,(c;u)=0, I<m, at any u, and c,#0,

In order to discuss the solutions of this equation, we dethen we are guaranteed that this solution solvesifeqgua-

fine them as the limit, ag— 1, of a family of solutions of a

parametrized set of equations: We defié ) such that
M'(1)=M"

1
My () =M}, + 5 (u= D (Sm-iy+m-j)1)

(i,j,m—=i,m—j,I=1,...m) (3.1
and the correspondingy quadratic forms
#i(c;m)=cM (n)c. (3.17
Clearly, Eq.(3.13 is now written¢(c; 1)= 0. The use of this

parametrization is that for =0, the solutions can be found
explicitly. Indeed, theM'(1) matrices are the Fourier space
representation of theonaliased squaring operator on a grid
restricted to the subspace of antisymmetric functions. The

normalsquaring operator on a grid E(xj), restricted to the
same subspace, is represented in Fourier space by'(®d

tions ¢p(c;u)=0 at u=0 and 1.(Notice thatc,,=0 means
that the periodicityp is smaller thanm.) Accordingly, we
define the seP(u) as the set of solutions of the— 1 equa-
tions ¢ (c; ) =0, | <m. We already saw that at=0, P(w)
has 2" solutions.

As u is varied, the points of the s@(w) can be annihi-
lated in pairgsee Appendix € We want to know how many
points survive whem— 1. In Fig. 7 we show an example for
m=4. The eight solutions of the three equatiah$c; u) =0,
I=1,...,3, are

(1,2: (0,0,0,2,(0,1,0,0
3,4 (17Q,0,1,0

O+1
c={ 5,6: (—Q—l,i \/ZT,l,i V2Q(Q+1)

7.8: (Q— 1,% 2%,1: 200 - 1)) ,
: (3.21)
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whereQ)=2— u. Solutions 2 and 4 fail to satisfy thmth ~ Equation(3.24b determines the value of according to the
equation ¢(c;u)=0 sincec,,=0. Solutions 3, 7, and 8 value ofcg:

change their real-space shapeasncreases from zero, as

can be seen in Fig. 7, and they coincidegat 1. So only _ 1, ¢cs#0
four different solutions survive gt =1, namely, those with V= 2, ¢s=0. (329
the codes

For example, in then=3 case that we studied before, there
was onev=1 solution[Eg. (3.6)] and onev=2 solution
[Eq. (3.7)]. Whenc# 0, we substitute the solutiori8.23 in
Egs.(3.24) and then they can be written in a matrix form

a: (LoRg)* b: RiLoReL1,
c: LoRiL;Rg, d: (LoRp)®. (3.22

Expressionsa—c are the only possible ones with periodicity
p=m=4. The periodicity of solutiord is p=3.

Since we lack an analytical description of the bifurcation ) . .
scheme of the s&P(u) for an arbitrarym, we will present WhereA is a (I'+1)x(I'+1) matr|§< (c, andL,), dis the
instead a bifurcation scheme based on numerical experiment§ctor of the {'+1) unknownsd=e*(dy,....dn,1), ande
of examples up tan=30. At ©=0 we assign to every so- is a given vector equal {d0,...,0,0, @/ko)cs]. The solution
lution ¢ an expression of the fori;L, R, which charac- vectord=A"'a completes the calculation of therRcoeffi-

- cientsbyy,,...,b,. Whencs=0, there is no generic solution
unlessI’=m- 1. In that case Eq.3.24h can be written in a
matrix form

Ad=a, (3.26

terizes its real-space discrete Fourier transfadifx;). To
each sequence of zeros and ones, as defined by3Ex),

02m*1l12n+1..02m+1120+1 e associate the product
above. Note that the; andn; are nonnegative half integers A(Cg,a)d=0, (3.27)
here.

As m— 1, the numerics show that Only the solutions with where A(Cs,a) is aI'XT" matrix andd is a vector ofl"
integern; ,n; survive. Indeed, we observe that those factorsynknowns:d= €(d,.,....d, ). The eigenvalue oA deter-
with half integern are modified as: is changed and reach ! y

finally the integer part oh, asu— 1. Accordingly, the pe- plitude. The O(®) quadratic equation for the nonzem

riodicity p of these solutions is lowered at=1, as illus-  o4e determines the amplitudeand completes the com-
trated by solution 7 of the example above. Those solutlonﬁutaﬂon_

that do not contain any half integer conserve their expres- * |y symmary, in the present subsection we studiedithe
sion when is increased. Their periodicity is conserved, andgs iy of solutions in the limit of smalkv. We saw that the
since p=m, Cp, iS nonzero so these solutions solve EQ.rgperties of these solutions are determined by the nonlinear
(3t.15).1The numerical experiments indicate that they all existyperator alone and therefore the generic solutions scale like
atu=1. . . Ja. [The nongeneric cases are those solutions whgred

_If we know that a solution to Eq(3.13 exists, we can (g_y a/>m) ] The spectrum of these solutions fills the
find it using analytlcall or numenc_al method;. Two more range ofk modes from zero to one. We found that, generi-
steps should be taken in order to fixthe amplitude of the cally, in a system of siz&=27m there areN :ngm’ sta-
solution. First, we write all theD(e*") eq_uations for_ Fhe tiona{ry solutions of periodicityp=m. So thep entropy per
modesd,, where m<n<2m. These equations are ftrivially unit length of this system is positive

solved by '

minescy(«) and the eigenvector determingsup to its am-

m E. Bifurcations of solutions of the first kind

1
L, ]21 CiCn—j, M<n<2m, (3.23 In this section we study the periodtupling bifurcations

of the solutions of the first kind. We examine in detail the
whereL,=L[n(ky/s)]/[n(ky/s)]. The next step is to find bifurcations of the cellular solutiot,(x) [Eqg.(3.1)] and its
the amplitudesd, wherens=m. Thec, dictate the symme- transition to spatial chaos. Then we will argue that all the
tries of a solution. A simple calculation shows that when asolutions of the first kind go through a multiplicity of cas-
solution is an eigenfunction of an operaf®y, [see Eq(3.8)]  cades of period+tupling bifurcations.

there arel’=|m/n+ 3| suchd, (i.e., modes where,=0) 1 Spatial period-doubling bifurcat
andT equations of ordee?"**, . Spatial period-doubling bifurcations

of the cellular solution U,(x)

d,=

! il m In the beginning of this section we saw that the stability

121 Cidn—i_j;n‘grl dej—n_jgl Cidn+;=0. of the harmonic solutioiJ,(x) changes at the critical line
(3.243 a1(Q;kp), as the largest eigenvalue of the stability matrix
crosses the imaginary axis. When this happens a bifurcation
There is yet another equation of ora&¢ ** for thec, mode:  occurs and a new branch of solutions can emerge from the
bifurcation point. Due to the quadratic nonlinearity, the per-
turbed harmonic solutiot,(x) +eMZ (v ,e' QT "X+ ¢ c.)

can saturate iQ=3k,. In the current subsection, the anti-
(3.24b symmetric period-2 solution

s—1 m m

o

2v+1 —

e’ Z deS*J'_AZ dej,s—Z deS+j —k—bs.
j=1 j=s+1 j=1 0
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o)

@ _ . ever, in contrast t&J,, (Fig. 3), the unstable region iabove
Up (X):an ib e (MBKX = —Dbpy,

the neutral curve and therefotd?) is unstable at any value
(3.28 of a.2
aP(Q;kg), like a1(Q;ko), has an extremum at

\év\i/lér?e investigated. The equations of the integer moges a®)=a{P(kyl4;ko). At that point, a secondary period-dou-

bling bifurcaton to a new solution U{Z)(x)

» » > =3 ,ib, ' (MK takes place. We show in Appendix A that
E by 1bn_ 1o+ E bb,_,=—L(nky)b,, beyond the bifurcation point there is one positive eigenvalue
1= 1= Ko and thesecondeigenvalue will cross the imaginary axis on

(3293 e neutral curver2)(Q;ky).

together with the equations of the half integer mog@esdd), The scaling of the coefficiert,,, beyond the bifurcation
point is similar to the first period-doubling bifurcation. It is
easy to see that similarly t{?(x), the coefficients of

Uﬁfz)(x) scale with two different scaling exponents: the odd

_ _ _ _ modes scale like d— a)®° and the even modes scale like

suggest that above the bifurcation point the solution can bgl_ac_

approximated by This period-doubling process repeats itself again and
again and we have an infinite cascade of spatial period-

(3.30  doubling bifurcations at the pointa() = a{?”(ko/2"Ko).
Above any bifurcation point the stability matrix has positive

where thea,, are the coefficients of the harmonic solution €igenvalues and hence the solutiang” are unstable, but

(3.1) and € is a small parameter. When we substitute Eg.one eigenvalue changes its sign on the neutral curve

(3.30 into Egs.(3.29 and expand them is, we find equa-  «{2"")(Q:k,). The series of bifurcation pointa@, con-

tions for any order. The order-one equations are trivially ful-

filed by the a,,. The half-integer mode equations are of

order e and they are identical to EgA3) with A=0, where 2 @ «n

thev ,_1) are replaced bg,,. Hence the period-2 solution Uy’ — Cexy ~ O (3.39

U (x) bifurcates from the harmonic solutiob,(x) at

aP= a1 (Ko/2;ko) = arexKo) . The second-order equation for We followed the first five bifurcationgat ko=0.93, using

[’

1
2, Doy = LN+ U2kolbn 1, (3290

anpt €%Chp, N even
"2\ eCm n odd,

verges geometrically ta2,):

the b; mode reads 241 modegand found the scaling to be
ay @ hH_ 2"
+B)e*=—(a— aey), 3.3 .« -
(A+B)e Ko (a— ey (3.3) 8,= lim H 10+ 1. (3.39

n—o Oeyt — eyt
where

[

1 w A system of infinite extent shows spatial chaotic behavior
A== S CrivCunns B=S ciay a—cp o beyond the accumulation point. Just abay@,’, U(x) ap-
n=-e n=-e Ko pears as a noisy"Zperiodic function, i.e., the spatial spec-
(332 trum becomes continuous around the apices ohthdevel.

From Egs.(3.30 and (3.31) we find the scaling behavior of When_a is further increased the §p_atial spectrum loses its
organized structure. Although a finite system cannot show

theb,: : ) Y
/2 spatial chaos, still we can say that it is disordered or close to
- a chaotic solution if it goes to a spatially chaotic solution in
bro(ac) +(a@— aex)Crp, N EVEN . 9 P y
bn/z(a) = ~ the I|m|t kmin*)o.
(a— a’ext)o'scnlzy n odd.
(3.33 2. Spatial period-n-tupling bifurcations

. . . . of the cellular solution U,(x
The numerical solution of the set of nonlinear equations for th(x)

the first 13 modest{_g,, . . . bgy) confirms this result. A The period-doubling bifurcation is only one example of a
translation ofU %2)()() by 27/k, gives a second antisymmet- W!der fan_nly of n—tupl!ng bifurcations[12]. A perturbation

ric period-doubling solution with coefficients With a ratlpnal normalized wave numb®/k,=r/s, wherer .
Brp=(—1)"bys. ands are integers, can be nonlinearly saturated together with

The stability of the period-2 solutiots{?(x) can be thes—1 other modes

tested by the method that has been used to calculate the N

stability of t_he sqlutlorUh .(Ql)v_e shoyv in appendix A that the Q=—ky, n=1,...s5-1, (3.36
global stability picture otJy™ is similar to that ofUy, . In the S

(a,Q) parameter space there is a neutral cumﬁ?(Q;ko),

where the upper eigenvalue crosses the imaginary axis. Howe one periods solution
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-u a3+ €Cps (N mod 3=0
: . - . = (339
108 . ] €Cy3 Otherwise,
0-5;‘ ‘ where thea,, are the coefficients ofJ,,(x) and e is a small
ook ] parameter. Notice that this scaling is different from the scal-
L ] ing near the period-doubling bifurcatidiieq. (3.30]. The
05F 3 equation for theéb; mode reads
) :
3 : 2 art 3)
a1.5F 3 Ae +BE=k—O(a—ac ), (3.40)
'2'0_5 . o U where similarly to Eq(3.32
FIG. 8. Two stationary solutions ate=0.21, ky=0.93: - . a(cs)
. . a=Vu. y Ko= V. . — — — -
UR(x) (solid ling) andU,(x) (dotted line. A n;w Cn+ 11230 B n;m BnC1-n=C17
(3.41
U ()= ;w ibyse! VI, b= —byys. Accordingly, the bifurcation isranscritical
(3.37
The simplest example is=3. We show in Fig. 8 bra( @) =bpa( @) = Coya @— atg)°%, (3.42
the graph of a period-3 solutiot){(x) in the (U,U’)
plane. Note the small modulations around the period-Where
solution U,(x). The solution found here should not be
confused with the other period-3 solutibh(x). If we com- 1k B2
pare the graphs of the two solutions in thd,U’") plane —g 07
! . ! ag= ag . (3.43
(Figs. 4 and 8 we see that the two solutions are of a differ- 4a, A

ent nature.
i ioh (3)
The period-3 solution bifurcates frot,(x) on the neu- In Appendix A we show that the solutiob™(x) has
tral curvea;(Q:k,) at the point zero eigenvalues at; andag, as in transcritical bifurcations

of low-dimensional dynamical systenisrdinary differential
equations However, unlike low-dimensional dynamical sys-

Q=ko/3, tems,Uﬁf)(x) is unstable at any value of the control param-
etera.
A richer behavior is found whes>3. The neutral curve
¥ = a;(ko/3;ko). a1(Q;ko) is nonzero in the band 1ko<Q<2k,—1 (see

Fig. 3) and therefore periodic solutions can bifurcate for any
; ) — _ <kg/(1—kp). A real perturbation contains two basic
We saw in Sec. Il A that;(Q/3;ko) =0 whenQ<(1—ky)  S=Xo 0 . . )
and therefordJ{3)(x) exists1 only if?<0>s/(s+ 1)=3/4. N(i,l- modesQ andk,—Q (and all their harmonigs Accordingly,
merical study ofof’)(x) shows that it exists aty>0.769. |s/2] different perturbations build one pericdfunction

Th i f i des. | (3.37 and they can be combined in several ways to build
€ equations of honinteger modes, for example, different periods solutions. For ans there ards/2| differ-

ent bifurcation points on the neutral curve:

2 _2 bn+1/3b|—n+_2 Bn+2/301-1/3-n _ r
n=-e I=- a(cs'r)za1<gk0;k0), r=1,..1s/2|. (3.44

:k_OL[(l +1/3)ko]by 4 173, (338 Asan example we will briefly examine the case5 where
there are|s/2|=2 bifurcations on the neutral curve. Near
together with the equations of the integer modes, suggest thal(f;’) the leading order of the marginal modeeswhile the
near the bifurcation point the solution scales like other mode scales like?:

aps+ €2dys, n mod 5=0

3.4
€Cnsdr ,+€2dpys, N mod 5=p5—p (p=12r=1,2). (3.49

n/5=
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Accordingly, the bifurcation equation reads IV. A FAMILY OF SOLUTIONS OF THE SECOND KIND
4 In this section we turn to the discussion of a second fam-
> Aﬁ,??”emzﬁ(a—a(f;”), (3.46 ily of solutions that are qualitatively different from those
m=2 Ko labeled as “First Kind.” The main characteristic of solutions

of the second kind is that they display a scale that is of the

where the factorsd,,, are defined similarly to Eq3.41). The  order of the size of the system. In that scale these solutions
number of turning points on the bifurcation cure€"(«) are related to typical phenomena that occur in experimental
could be one or three, depending on the signs of the factorsystems. It has been often observed in the transition to chaos
We found numerically, at,=0.93, thate>? has three turn- in experimental systems that there existsnaan flow(or
ing points, while %?(a) has only a minimum point at drift flow), which is a flow whose length scale is large com-
a=a®? (saddle-node bifurcation Notice that translation pared to the wavelength of the cellular stétey., convection
of any of the period-5 solutions byrHk, gives another an- rolls) [14—-17. Numerical experiments of the modé2.2)
tisymmetric solution with coefficientd 5= (—1)"b,s. and (2.10 .exhibit stationary and time-dependent squtions

We saw that in addition to the period-doubling bifurcation WNOSe typical length scale is of the order of the system size.
there is a finite set of possible bifurcations on the neutralSing the control parametgs we can control the time de-
curve ay(Q.ko) at any periodicity s such that Pendence of this solution. Whefis larger than a critical
s=Q/ko=2,3,..| ko/(L—ko) |. The bifurcation curve has value 8., the Iarge—_scale solutions are staple. Wheris .
one to|s/2] turning points. The period—solutionsuﬁs)(x) Iowered, thes? solutloqg pass through a series Of. quf bifur-
are small modulations arourid,(x), as can be seen in the cations. The first transition is to a temporally periodic solu-

example in Fig. 8. Any of the solutionslﬁf)(x) has its own tion and then the solutions become quasiperiodic and finally

. ) . temporally chaotic. This family of solutions is denoted
neutral curve where one eigenvalue crosses the |mag|narl¥”(x t)

axis (notice that the highest eigenvalue is always positive,

. X ; In Sec. Il we saw that when d, solution is substituted
i.e., these solutions are unstabl®n that line a secondary !

bif i ih a diff 5 take ol elding i into the model equation, the lowest-order terms are deter-
turcation, with a difierents, can take place, yielding in- - ,inqq by the nonlinear operator alone. This implies that the

ducdtl_velly a hmrarcfycgl .Sth“Ft:“fre of b'fl:jr.?fat'oﬁfz]' '?‘C' ‘ amplitude of the solution is proportional to the square root of
cordingly, we can find infinitely many difierent routes 10 o cqptrg| parameter. In addition, the set of solutions is

spatial chaos through an infinite series of bifurcations, : ; - -
. . . invariant, in the lowest order, under inversiod,(x
3 =(s;S,...), whereX=2" is the period-doubling route. 1(X)

y ) I : : — —U(X). In contrast, we will see that for the,, family
tl_:mally,r\]/ve 205tetrt]hat in ad?rl]tlon to_ tg_e neLIJtrtgl line Iblfur— the linear and nonlinear terms are of the same order and
cations, whers=> there are othes periodic Solulions, CIOSE  yqafore the solutions are proportional to the control param-
to Ux(x), that arise at finitex. Accordingly, these solutions

are finite at the bifurcation point. For example, wheab eter and are not invariant under inversion.
there is one solution, with two branches, that bifurcates at
alPV<a<al®? . At higher values of there are more such
solutions. A similar family of stationary periog-solutions Our discussion is based on the observation that we can
has been found numerically for the Kuramoto-Sivashinskyfind an exact stationary long-wavelength solution to the
equation[13]. model equatior(2.2) when the linear operator has only one
unstable mode and no stable modes, i.eL (i) is of the
form

A. Stationary solutions

F. Summary

The upshot of this section is that the family of stationary L(k)=86(]k|—k;), B>0. 4.0
solutions of the first kind is very rich indeed even in our
S|mp||f|ed model. We showed that we can propose a Symlndeed, we shall check that the time-independent fund.ﬁ@n
bolic language that describes the organization and countini§ @ solution of Eq(2.2) with L as in Eq.(4.1):
of the basic periodic solutions in this family. On top of these
basic solutions there is a complex arraynefupling bifurca- U(X) =AE sin(ﬁx) W
tions that results in an even richer spatial complexity in the ¢ Ky 2
topological sense. Although we considered in detail the bi-
furcation scheme of the cellular solutidh,(x) only, it can ~ Wherew(6) is the Walsh cdll,(6— /2] function

be shown that all other members of te family that can be

Ky
EX), (42)

written as ﬂiLniRnir)“’, go through similar bifurcations as 1 if zs 0<3—7T
is raised, until they become spatially chaotic. w(0)= 2 2 4.3
Notice that beyond any bifurcation point the new period- —1 otherwise.

n solutions coexist with the old ones. Solutions do not dis-

appear, but they usually exchange their stability with the newBubstitution into Eq(2.3) gives
periodn solutions. Accordingly, the spatial topological en-
tropy that we estimated before is just a lower bound to the
rate of increase of allowed solutions. This explains in part
the unmanageable complexity of stationary solutions avail-
able for the case of the Kuramoto-Sivashinsky equation. The Fourier transform ofJ.(x) is

AB\%
MUC(X)]=(2—k1) ky sin(kqx). (4.4
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FIG. 9. Time-independent solution of the mo@2I2) and(2.10. 8=0.2,k;=0.06,ky=0.93, andx=1.2. Left: comparison of numerical
and analytical spectruriU (k)| at k<1. Right: real-space numerical solutidh,(x). Inset: curve ofU.(x) vs —d,U(x). The large
“excursion” is due to the sharp jumps, while the flat connection is due to the monotonically decreasing part of the solution. The reader can
compare it to they("2 orbit in Ref.[20].

g < smaller than 14 and is zero for higher modes. Similar os-
U(x)= i« E 2u, sin(nk;x), (4.53 cillatory shock solutions have been found in numerical stud-

1n=1 ies of the Kuramoto-Sivashinsky equation with homoge-
neous Neumann boundary conditidi®,2Q.

A 1 1
Up=—(— 1)”(ﬁ+ m) . (4.5b Define the fieldh(x,t)=3/§dy U(y,t). By integrating
m n n the solution(4.2) one obtains
If we choose the amplitude & (x) as
k
h(x) e cos(—lx . (4.8
A=ra, a 1.08, (4.6) 2

:W:

Notice that other Galilean invariant equations such as Burg-
er's equation and Sivashinsky’s equation have similar solu-
tions[21]:

then, indeedU. solves Eq.(2.2) with the linear operator
(4.1. In Fig. 9 we compare the solutidd (x) and the nu-
merical solution of the model equation with the full linear
operator(2.10. It is manifest that they are very close, and

this is the basis of the following discussion. h(x)=In[|cogx)|], (Burger's equatiopy
Whenkg is sufficiently incommensurate witky , the lin-
ear operatof2.10 deviates from Eq(4.1) only atk>1, so h(x)«=In[|a—cogx)|] (Sivashinsky’s equation
U.(x) is close to the exact time-independent solution of Eq. 4.9
(2.10 atk<1, as we can see in the figure. WheyTk; is an
integer there are small deviations frady(x) atk~Kkp. In For a given set of parametera,(3,k, . . . ) one can find a

the remainder of this section we will use the solutlde(x)  second long-wavelength stationary solution. We will show

as an approximation to the exact solution of the md@e®)  inat a solution with very complex spatial spectr¢see the

and(2.10. . _ _ inset in Fig. 10 can be analyzed analytically when one
The ansatz fotJ(x) [Eq. (4.2)] contains sharp disconti- chooses the appropriate variables to describe it. We look for

nuities atxo= (1/k;)(n+ 3) . Accordingly, its spectrum de- a solution of the form

cays like 1k2. Of course, due to the dissipative modes in the

linear operator, high spatial modes will be exponentially B (kg ky

damped 18] and the discontinuities will broaden. We denote Ug(x)= o« sm(?x)w(?x; 19) Z(x), (4.10

the width of the “discontinuities” byl,. Since |U(k)|? !

starts to decay like kf at spatial modes smaller than

k~1/,>1 and exponentially above ity is a “Kolmogorov

scale.” Hence a better approximation fbr.(x) near the

discontinuities is

wherew( 6;9) is the symmetric rectangular wave

T 3
if §—ﬁ$0<—+’l&

w(6;9)= 2 (4.11

(4.7 —1 otherwise

X
UC(X)Z ; SI(l—

0

m 1
, |X_ XO| < E k—l,
where  Sig) is the sine integral function andz(x) is an unknown function ok. The Fourier compo-
Si(z) = [{[sin)/t]dt— /2. The limitl;— 0 is the jump limit,  nent of the nonlinear ter!V[ U4(x,t)] at spatial frequenci
while for finite |, it decays like 1 for spatial modes is
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u u
T T T T i 0‘20 F T T T
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FIG. 10. Time-independent solution of the mod212) and (2.10. 8=0.005,a=0, andk,;=0.09. Left: spectrum of?(k) (A=2.03,
B=18.2, andC=16.J). Inset: spectrum ofU4(k)|. Right: real-space numerical solutiod;(x).

B
k(z—kl

2 ) ) ) with k, we were able to truncate the stability matrix after
[2z°(k) —z°(k+ k1) —z°(k—ky)], (412  three modes and yet have a good approximation of the com-
plete stability matrix. For two reasons this is not the case

wherez2(k) stands for th& component o&2. We substitute  With U¢(x). First, there aré@(k; *) modes that do not decay

an ansatz for?(k): exponentially and we want to check the stabilityldf(x) in
the limit k;— 0. Therefore, there is an infrared divergence in
5 5 Mmax the number of relevant modes. On the other hand, we do not
z*(k)=A?+B(1—-Clk|) ann o(k—kqn) know a priori how many modes in the short-wavelength re-

4.13 gime are needed to stabilize the solution. Therefore, we start
with an infinitely large stability matrix and examine the de-
and then Eq(4.12 is equal to pendence of the eigenvalues on the matrix size.
As in Sec. Il A, we substitute in the model equation a
solution of the formU(x,t)=U.(x)+eMv(x), wherev(x)
is a small perturbation. The linear eigenvalue equation for
v(x) is

2
k1(£) A?5(|k|—kq) +R, (4.14
1

where R=c¢; 8(|K| — KiNma) +C0( K| — K1 (Nmaxt1)). When
a=0, Eg. (4.14 is an exact solution for M =To]+ L]+ L v]=5v], (4.19
k/k1<=npa—=[(1+K)/Ke|. We see in Fig. 10 a comparison of
the ansat#4.13 with the numerical solutiofthe coefficients
A, B, andC were found by fitting the ansai#.13 to the To]=d,[U(X)v(X)] (4.16
numerical solutioh When a«#0 there are deviations from
Eq.(4.13: (i) There must be a discontinuity in the slope of and the linear operatof has been split into two parts
72(k) atk=Kkq so (M Ug4])(ko) #0 and(ii) 9+#0 and hence L=L"+LS, where £ contains only unstable modes,
the k# nk, components are not zero but constant. A detailed."(k) =0 for |k|=1, andL® contains only stable modes.
discussion will be given elsewhef22]. SinceU(x) is periodic with periodk; [cf. Eq. (4.5)], the
eigenvectors off are characterized by a normalized spatial
B. Stability of the stationary solution frequencyq=Q/k; and they have the form

As in the case of the solutions of the first kind, we exam- *
ine now the stability of the stationary solution under small v(X)= >, v,k qe[0,1). (4.17
perturbations. Numerical integration of the mod@2I2) and n=-e
(2.10 shows that its stationary solution is stable inside th
subspace of antisymmetric functions, wheis larger than a

critical value B;. Although U.(x) deviates from the exact of S, such thato(S) = Sqo(£(q) + 7()), where the opera-

solution of the model equation, we can expand the operatar g -
L+ N around it. This means that we may find several un(—)torS £(q) andT(q). can be represented by the infinite matri

S . : cesT(q) andL(q):
stable directions towards the exact solution. Numerical com-

where the operatdf is equal to

€Sincer is diagonal, the eigenvectors Sfwill have the same
form. This means that we can decompe$§), the spectrum

putation of the stability matrix o) .(x) does show one such Ti(q)=8>(+qu_;,
direction. However, this should not affect the qualitative un- . .
derstanding of the other eigenvalues, which lead to the sta- Lij(a)= & ;L ((i +q)ky), (4.18

bilization mechanism.

In Appendix A we studied the stability of the short- whereu, is defined in Eq(4.5b).
wavelength solutionUy(x). Since the amplitudes of the In [22] we show that the real part of the spectrum of
higher modes K>2) of this solution decay exponentially (TN(q)+LY(q)), whereTN(q) is the projection off (q) on a
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Re|r}/B tion we describe a Hopf bifurcation of the stationary solution
T . . — U.(x). We will see how the long waves and short waves
; ] interact to create a time-periodic solution. This Hopf bifur-
1 cation is the first one in a series of bifurcations that lead to a

3 temporal chaos whep is decreased, cf. Sec. IV D.

] The nonlinear modeg(2.2) and (2.10 conserves antisym-
metry, i.e., an antisymmetric field(x,ty) stays antisymmet-
ric for anyt>t,. An antisymmetric periodic solution of fre-
quencyw can be written in the general form

Up(X,t) =mg(X) + ngl ie'™koX m (x)e" 4+ m* (—x)e "t

(=
T

2

3f : 3 Bk
0001 o1 1 100 +c.c., (4.21)

FIG. 11. Eigenvalue_s of_the stability matrixkl=1.0005/1_6, ‘where an asterisk denotes complex conjugation and we ne-
9=0, and a=0. Abscissa: the control parameter. Ordinate: yacteq the off-diagonal terms inu(k) space. We see that
Re{)\(ﬂ}; the_ real par't of the largest eigenvalues of the stabllltymn(x) are the coefficients ofleft-traveling wavesand
matrix () is normalized bys. m* (—x) are the coefficients afight-traveling wavesm; is

a stationary real function. These traveling-wave solutions
..Nk;), has . .
reak the Galilean symmetry: There is no reference system
n which Uy(x,t) is at rest. In order to find a periodic solu-
tion to the model equation we will have to make a few as-
sumptions. Near the onset of a periodic solutjpa., when
U(x) becomes time dependent as we decrggisere elimi-

a(L(q)+T(@)=a(LY(q)+TN(q))+ o(Lq)), nate all them,(x) exceptmgy(x) andm,(x). We now substi-
(4.19  tuteUy(x,t) in the model equation and define

finite space of (A +1) Fourier modes+{ Nk ,..
positive eigenvalues, but they are bounded from above b
¢ maX B,a(k,/ky)], wherec~O(1). On theother hand, the
spectrum ofL%(q) is real, negative, and unbounded from
below. Then we show that for sma#l

whereN=|1/k,|. Therefore, for smalB the long-wavelength Ly [my(x)]=e" XL my(x)e' o ]. (4.22
solution U(x) is unstable. Wherg is increased, the cou-
pling to the stable modes df(q) stabilize the unstable The following coupled ordinary differential equations for the

modes of(L"(q)+T"(q)) until B=4.: functionsmy(x) andm;(x) are found:
%=C max( kl,ki , (4.20 Ol 3MG(X) + My (x)[2+]my(—x)|2]+ L[ my(x)]=0,
1 0

(4.233

with ¢c~O(1), when all the eigenvalues become negative, : i .
i.e., U.(X) becomes stable, as can be seen in the example F(Mo|My[) +i (ko + dxdr) Mo my | +e 7' 1.L, [my ] =i w[my],
Fig. 11. (4.23h

where ¢4(x) is the argument ofn,(x).

The exact solution fom,(x) is seen in Fig. 12. We find

In the preceding subsection we saw that wien B, the  an approximate solution of these equations in Appendix D.
stationary large-scale solution loses stability. In this subsecwWe show that the onset of a periodic solution occurs at

C. Time-periodic solution

o, lm, |

0.6

0.4

02

-3f . . . 1 x ool

FIG. 12. Periodic solution of the mod€&.2) and(2.10. «=1.2, 3=0.0691,k,=0.93=2Ak, andk,;=0.06. Left: numerical solution of
the phasep,(x). Right: numerical solution of the amplitudm;(x)|. Dotted line: analytical ansatz.
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FIG. 13. Poincareection at three values gf 0.052 572, 0.052, and 0.051@ft to right). a=1.2,k;=0.06, andk,=0.93. The abscissa
is U(ky), the amplitude of thé, mode. The ordinate is the square root of the total “enerdy2 \=,U(k)?. The Poincaresections were
taken atU(ky)=0.1.

At the bifurcation point the stationary fielas,(x) of Eq.
(4.21) become time dependent:

B.~0.0527%. (4.24)

This result is in accordance with the stability matrix estima-

tion B.=(ky/kp) @ [Eg. (4.20]. We also find the temporal
frequency of the solution

ko—kq

w=

O p—2"

My(X)— Mp(X) + 7,(X) €2+ 7, (x) e 12,

(4.26

The linearized equation fog,(x) is identical to Eq(4.23b:

(4.29

(Mol 1)) +i(Ko+ dxcb ) mol M| + €7 Pm Ly [ 4]

=iw1| 771|=

4.2

In this section we analyzed the periodic solution that bi-wherew;=w+ () and ¢,71(x) is the argument ok,(x). We
furcates fromU¢(x). A similar periodic solution bifurcates rite the solution in the form mgy(x)=Mfg(X),

from Uy4(x), close to the bifurcation point af .(x). So both 771(X)=N1A7}1(X) where My(x) and 771()() are some func-

period:c solutions coexist within the band of values of thetions independent of the parametéasB), so when the real
control parameters. part of Eq.(4.27) is integrated from 0 tcC we get
Nl+ alNlMo:O. (428)

D. Three modes, quasiperiodicity, and temporal chaos

The periodic solutions that we found involve left- and The equation fomy(x) takes the form
right-traveling waves and a stationary component. Near the
onset of a periodic solution we could truncate the solutiontc  x__-x_.
three temporal modesmn,(x)e'** et m¥ (—x)e!(kxet), 10 e
andmg(x). As the control parametes is decreased further, :
there exists a range of values for which one can still describe
the temporal behavior of the mod@.2) and(2.10 by three- 10
mode dynamics.

As an example for thgg dependence consider the values = 3
ko=0.93, k;=0.06, anda=1.2. Start with the stationary
solution Uy4(x) [Eq. (4.10]. The first Hopf bifurcation oc-
curs atf=0.0709 and the solution becomes periodic. Start- -4
ing at 3=0.052 98, we can see transient states with two
frequenciesw and w4 . The frequencies are irrational with a
winding number close to 1/6. A secondary Hopf bifurcation 10” ot
to a quasiperiodic solution occurs At=0.052 58. At that 10 10 10
point the_winding number is close to 8/49 [@’8] in contin- FIG. 14. Measure of the size of a Poincaeetion(Hopf radiug
ued fractiond23]. As we decreasg, harmonies of the form 55 5 fynction of the distance from the bifurcation poiats 1.2,

Mo +nw,, wherem andn are integers, begin to appear. The i, = 0,06, and,=0.93. The ordinate is the difference between the
phase-spac@/ spac¢ diagram shows &7 torus attractor. maximum and the minimum of the square root of the total energy
The projection of the Poincarsection of,this attractor is 5= /S, U(k)Z on the PoincarsectionU(ko,)=0.1. In the shaded
shown in Fig. 13. The size of the Poincasection (Hopf  region the size of the Poincasection depends on the initial con-
radiug as a function of the distance from the bifurcation ditions. The slope of the straight line is 0.50 and the bifurcation
point is shown in Fig. 14. point is 8,=0.052 581.

|B‘Bo|

;| 3

10
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1 B
ax(5m3<x>+2 [ImiO0 2+ [mi( =) 2]+ | 72(0) |2 01
+|71(=X)|? | + L[ Mp(x)]=0. (4.29 )
/" Fixed Point
After projecting Eq.(4.29 on kX the effective equation /
near the bifurcation point becomes ~+" Temporal Chaos
0.05
(B—Bo)Mo+byNi=0. (4.30
Space-Time
From Egs.(4.28 and (4.30 we find that the bifurcation of Chaos
the quasiperiodic solution is supercritical:
— Stationary
N2= M (4.31 Cellular Solution
! bia; 0 rr—rrrr——— g ¢
0 0.5 1.0 1.5 2.0

as can be verified in Fig. 14. FIG. 15. Schematic phase diagram of tfweo-mode modeat
At lower values of$8 a new commensurate frequency ap- ko=0.93 andk; =0.06. The solid lines show bifurcations 0f,(x)

pears atw =w—6w;. At =0.0519,w andw,; are exactly  fom a fixed point to a periodic orbif;2 torus, temporal chaos, and
rational with a winding number 7/43 0f6,7]. When  gpace-time chaos. The dashed lines refer to the same bifurcations in
B=0.051 76 the torus breaks immediately after the appeary ,(x). Notice thatU,(x) does not exist to the left of the leftmost
ance of a new incommensurate frequengy< 3, and the dashed line.

Poincaresection becomes chaotitemporal chags When

we further decreasg, one eigenvalue again becomes nega-\When g is lowered further we expect two things to hap-
tive and we find a newl? torus at3=0.0516. The system pen: (i) The number of unstable directions grows and at
once more becomes chaotic & 0.0515. This behavior is B=0 it is proportional to the effective system sikg’ and

in agreement with the picture found in Sec. IV(Bee Fig.  (ii) the amount of phase space that is visited by the chaotic

11). trajectories is expected to grow @gsis decreased.
The bifurcations of the system were also checked at

a=0.45 and a variant of the above scenario was found. A V. QUALITATIVE FEATURES
penod-2 solution appears #=0.0316. AT? torus is ex- OF THE SPATIOTEMPORAL COMPLEX DYNAMICS
cited at3=0.0305. The torus undergoes a period-doubling
bifurcation at 8=0.0288 and it becomes chaotic at This section, which is the least rigorous in this paper,
B=0.028 75. An ordered torus reappearsBat0.0287 and offers a qualitative description of the dynamics that leads to
becomes again chaotic At=0.0286. Notice that the station- Spatiotemporal complexity. We use here all the results found
ary solution itself is stable down t8=0.029 (hysteresis in Secs. lll and 1V to portray the itinerary of a typical orbit in
Using the two control parameteﬁ and a, we can find a functions SpaCé/[. In addition, we describe below additional
variety of winding numbers: For example, wh@=0.075 humerical experiments to support the qualitative concepts
anda=1.9, we find a mode locking with a winding number that are offered. We begin with such a numerical description
of 1/5. One can study the quasiperiodic band in thgg)  ©f @ typical trajectory.
parameter spacgee Fig. 15and look for universal proper-
ties[24-26. A. Transition to space-time chaos
To obtain a global picture of the structure of the phase
space we need first to choose how to represent trajectories in
In this section th&J,, family of large-scale solutions was our infinite-dimensional phase space. Two useful coordinates
introduced and discussed. We found two Stationary SO|Uti0n'§hat give Comprehensib|e projections can be constructed. The
that were denotedJ(x) and U4(X). These solutions are first is U(k,), the amplitude of thd, mode. The second is

stable when3>g.. As g is decreased, the stationary solu- the square root of the “energy” of all the other modes in the
tions undergo a series of Hopf bifurcations and become peunstable region

riodic, quasiperiodic, and then temporally chaotic. The first
Hopf bifurcation is subcritical; the stationary solution is
stable for a band of parameters below the line of transition to A= \/ > (k) (5.3)

o X . X . 0<k<1lk#kg
the periodic orbit. We interpret this scenario asRaelle-
Takens phenomend7,2§. The time-dependent solutions
are composed from patches of short wavelength, left- andhe reduction to two coordinates is done because of graphi-
right-traveling waves, separated by sources and sinks, on @l convenience. However, the choice is also justified by the
background of the stationary long-wavelength solution. Nofindings of the earlier sections; tig family emanates from
tice that at any given values of the control parameters therthe single unstable mode &}. The modes withk>1 are
are two distinct ordered or temporally chaotic trajectoriesslaved to the modes in the sui®.1).

E. Summary
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A The model consisting of Eq§2.2) and(2.10 and3=0 was
1.0[ ' ' ' ‘ ' then integrated in time and we checked whether the chaotic
I ] or the ordered phase was obtained. We repeated the integra-
0.8+ ] tion for a set of initial conditions, different values &,
fixed value ofA,,, and various values of the system si2ze
0.6 ] Notice that the hyperplané (ko) =0 is a critical plane, i.e.,
] when the initial conditions aré,,>0 [ A,<0], then the tra-
0.4l b jectory first grows in theJ (ko) >0[ U (ko) <0] half plane, as
’ can be seen in Fig. 16. The results of the numerical experi-
I ments are shown in Fig. 17. We see that there is a sharp
02r ] phase transition between the ordered and chaotic phases. We
i ] also see that below=0.25 the cellular solution is unstable.
0.0 Uk)  This is in agreement with the stability matrix result

05 00 05 10 15 20 25 Qo= 0.2475(at ko=0.93;, see Fig. B Above a.y the tran-

FIG. 16. Reduced representation of four trajectories in the phasé&ition line scales like
spaced. The abscissa 8 (kg), the amplitude of thé&, mode. The
ordinate is defined in Eq5.1). The initial conditionsa™ andb™ A=a(L)(a—ap)”. (5.3
flow to the fixed pointU,(x) (A=0), whilea® andb* become

chaotic.ky=0.93,¢=0.3, andg=0. The transition line and the phase-space trajectories suggest

that there is an unstable fixed point in the phase space whose

In this representation the stationary solutidp(x) [Eq.  stable manifold separates the basin of attraction of the fixed
(3.1)] is located on the abscissa=0. We saw in Sec. lll A point U,(x) and the chaotic orbit. Actually, we found in the
that the stationary cellular solutiod,(x) is stable when numerical experiments a family of such fixed points. These
a>aeg. Numerical experiments show that when biperiodic fixed points are characterized by two wave num-
B<Bmin(a:ko,ky), a spatiotemporal chaotic phase exists be-bersk, and its subharmoniQ=ky/s (se Z, Q>1—kg). An
side the ordered phadéy(x). In Fig. 16 one can see the example withs=11 is shown in Fig. 18. The exact biperi-
results of four runs with different initial conditions: Two odic solutionsU{®(x) that we found in Sec. Ill E can be
trajectoriega” andb™) flow to the fixed poinU,(x), while  realized in a numerical experiment only if the basic spatial
the other two exhibit spatiotemporal chaotic behavior. Thesérequency of the solutiok,/s is a multiple of the smallest
examples are generic. There are two gross “basins of attradrequency 27/ £. Generally this is not the case and the nu-
tion” here. One region flows to the fixed poitt,(x) and  merical integration shows only a close approximation to
the other region spawns chaotic orbits. Further detailedef)(x), An example of this finite size effect may be seen in
analysis of the second region reveals the existence of othetig. 18. The stationary solutiod,(x) hask,/Ak= 31 cells.
small basins of attraction of additional fixed points dispersedrhe spectral picture shows a period-11 solution, but the low-
inside it. These will be referred to below. est excited spatial mode is mode num|@/11= 2. Accord-

To establish the existence of sharp separatrix in this spag@igly, the real-space picture shows two basic blocks. A fixed
we chose a random direction in phase spR@nd started the point with a specific value o§ is chosen in the numerical
orbit from the “noisy initial condition” chosen as a linear integration due to the existence of component in the
combination of the cellular solution and the random directioninitial conditions.

The biperiodic solutiond){®(x) have only one unstable
direction. These solutions are the unstable fixed points that

U(k,t=0)=A,Un(k)+ Arﬁ. (5.2 have been recognized in the numerical experiments. The
Ar A,IA
10T 0.30[ ' ' '
0.8 ] 025} ]
0.20F .
0.6 ] i :
0.15F .
0.4+ A ]
0.10F .
0.2r ] 0.05F ]
0.0 I 1 1 1 | 1 a 0.00: " 1 H ) ] o
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8

FIG. 17. Phase transition between chaotic and ordered phases as a function of the initial cpAgiti@nsee Eq(5.2)] for different
values ofa and £=27/Ak. ko=0.93 and8=0. Right: fit of the points in the range<0.6 to the linesA™*=a(a— ay).
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FIG. 18. Modulated cellular fixed poinsE&11). Left: spectrum of the solution. Right: phagéx) (full line) and local wave number
(dotted ling (numerical experiment d,=0.93, «=0.3, andAk=0.03.

codimension-one stable manifold of these solutions is theve do not claim that we have identified all the stationary
separatrix between the basins of attraction of the orderedolutions, but we believe that we have control of some per-

phase and the disordered phase. tinent families that suffice to characterize some global fea-
The size of the basin of attraction bf,(x) is determined tures of the flow. The usual signatures of space-time chaos
by the phase-space distance betweégy(x) and U{®(x).  (like topological defectswill result naturally from this dy-

Therefore, the value of in Eq. (5.3 is determined by thee ~ namics. We assemble now all our findings to suggest a sche-
dependence of the largest coefficidnfs, wheren is an  matic presentation of the phase spateee Fig. 19. In Sec.
integer between 1 and—1. If we test this dependence in |V D we found that the long-wavelength solutions of tHg
various solutiondJ{¥(x) we find that above the immediate family become temporally chaotic through a series of Hopf
vicinity of the bifurcation point, the largest coefficient scalesbifurcations. The chaotic attractor stays close tG2atorus

like (a— a.)? wherey is in the range 0.8 y<1 and it takes and it involves only few spatial components that have an

different values in different biperiodic solutions. erratic modulation in time. Although every component is a
A solution U(x) in the vicinity of U,(x) can be modeled Complicated function of space with a wide spatial spectrum,
by nonetheless we are still in the regime of temporal chaos. The
space-time picture is one of phase turbulence around one of
U(X)=UpX+ @(x))+W(p(X)). (5.4)  the long-wavelength solutiorid (x) and U y4(x).

In Sec. Il we studied the short-wavelength stationary so-
Close toU(x), ¢(x) is small and is slowly varying in space lution U,(x) and a set of biperiodic solutiorlsﬁs)(x) that
such thate(x)=ep(ex) and W(e(x))~€?, wheree is a  bifurcate fromU n(X) on the neutral curve. The basin of at-
small parameter. When the amplitude ¢fx) is small the traction of the long-wavelength stationary solutidds(x)
solution relaxes towarddp(x). In Fig. 18 we see the devia- andU4(x) and their time-dependent descendants is confined
tion of the local wave numbete(x)/dx from ko exactly at by the codimension-one stable manifold and the one-
the biperiodic fixed point. When the local wave number isdimensional unstable manifold of the biperiodic fixed points
too large, the solution becomes locally unstable. This Iongugf)(x), as can be seen schematically in Fig. 19.
wavelength phase instability is an Eckhaus-type instability The U, family of stationary solutions has been considered
[29] and is known in other systeni80,31 that exhibit simi-  jn Sec. Ill B. Numerical examination of these fixed points
lar phase modulatiofi32,1¢. When the local phase devia- shows that most of them are contained within the basin of

tion becomes larger, the amplitudedfx) becomes smaller jattraction of theU,, family of solutions(the hatched area in
and topological defects are nucleated at the points where the

local wave number is too large. Immediately after the defects
are created, the system leaves the vicinity of the modulated
cellular fixed point and flows towards the spatiotemporal
chaotic attractor, as can be seen in Fig. 16, where the behav-
ior of the system can no longer be described by phase dy-
namics around the cellular solutids,(x). In other words,

the spatiotemporal chaotic behavior cannot be thought of as
disordered time behavior of the cellular solution.

B. Complex dynamics
P y FIG. 19. Schematic presentation of the phase spadde torus

In this subsection we offer an image of space-time chaos the center encircles a stationary fixed pdidt, or Uy). Its basin
that at least for the type of models studied here can be urs bounded by the one-dimensional stable manifold and the unstable
derstood as an orbit in function space that is organized by theanifold of the biperiodic fixed points, represented here by the
families of stationary solutions that we identified. In doing sosaddle fixed pointJ(® .
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FIG. 20. Left: typical chaotic orbit g8=0. (The axes are defined in Fig. 18Jiddle: time-averaged spatial spectrum of the chaotic orbit.
Right: enlargement of the long-wavelength regikg=0.93 anda=1.2.

Fig. 19. WhenAk is small enough, they are unstalféaddle Due to the translation symmetty .(x+ £/4) is also an
fixed pointg. In addition to the unstable stationary solutions, antisymmetric fixed-point solution of the model equation. At
there are also temporally periodic solutions inside the basifow values of 8 the chaotic tori aroundU.(x) and
of attraction ofU,, . For example, we found a stable periodic U.(x+ £/4) merge. At even lower values ¢, this orbit is
orbit atAk=0.037,k;=2AKk, ko=25Ak, 8=0.03, andein  merged with the one aroundy(x) andU4(x+ £/4). As the
the range 1.8-1.9. This orbit, similarly t9,(x,t) [Eq. trajectory meanders between these tori, one cannot recognize
4.21], is composed of a stationary part and segments of leftthe “footprints™ of the fixed pointsU (x) andUy(x) in the
and right-traveling waves with temporally modulated ampli-real-space picture, yet the averaged spectrum of the chaotic
tude. At low values ofAk these objects lose stability. attractor retains thé > long-wavelength spectrum of the
When g is decreased below the point of transition to tem-Stationary solutions as can be seen in Fig. 20.
poral chaos(or « is increasey the “size” of the chaotic
attractor around the torus becomes bigteg. (4.31)] until C. Explicit example
the system reaches a critical point where the chaotic attractor The aim of this subsection is to provide an explicit ex-
suddenly widens as it approaches the stable manifold of ongmple for the picture that we offered for the nature of space-
of the saddle object$Forky,=0.93,k;=0.06, ande=1.2 it  time chaos. We consider a situation that allows following the
happens ap~0.048 55. The trajectory spends long inter- orbit as it passes close to specific stationary unstable solu-
vals of time in the metastable chaotic attractor near the torugions. The system undergoes bifurcations, as a function of a
until it is attracted towards the saddle; it then bursts out angbarameter, of the type discussed in the preceeding subsec-
stays close to the saddle for a short period of time befordion, leading to increasing complexity in the space-time dy-
returning to the former attractor, guided by the unstableramics.
manifold of Uﬁf’(x); it remains there for a long time and To allow detailed understanding of the dynamics we sim-
then repeats the cycle. plify the situation by having only few modes in the rarge
The time interval between bursts is randomly distributed,€ (0,1). We choose arbitrarily the parametek&=0.17,
but its average length becomes shortergais decreased. Ko=5Ak, and k;=2Ak. With these parameters there are
This phenomenon, where the chaotic attractor loses stabilitprecisely five unstable modes in our model. To view the
when it approaches an unstal{gaddl@ fixed point (or a trajectories we project them on the two-dimensional plane
periodic orbij that is inside the attractor’s basin and collides (U1,Us), where U,, denotes the amplitude of the mode
with it through a heteroclinic tangency, was callediate-  NAK.
rior crisis and the chaotic temporal behavior was called At «=0 the model equation possesses a long-wavelength
crisis-induced intermittenc}33]. solution. An approximation of this solution was calculated in
The space-time picture resulting from the intermittent het-Sec. IV A and denoted d$(x). This approximation is valid
eroclinic connection between the temporally chaotic attractofs long asg/k,;=1. At lower values ofg the approximation
and the saddles inside the basin is that of spatiotempordireaks down. However, in the present example, in which
chaos. The intermittency produces low-frequency noise ironly a few unstable modes exist, one can calculate this solu-
the temporal spectrum. Due to the parity symmetry, for anytion explicitly using a truncation method of the type em-
saddleU,(x,t) in R (see Fig. 19 there is a counterpart ployed in Sec. Ill B. When increases this stationary solu-
—U,(—x,t) in L. Accordingly, the trajectory will have the tion becomes time periodic via a Hopf bifurcation. The
form of a doubly heteroclinic orbit as it wanders aroundstationary and the periodic solutions belong to the family of
U,(x,1), the torus, and- U, (—x,t). As B is decreased fur- solutions of the second kind that was denotedJas
ther the chaotic trajectory will discover more and more In addition, for =0 the model equation has a short-
saddle objects inside its basin of attraction. A typical trajecwavelength solution denoted &k,(x) and the subharmonic
tory shape is seen in Fig. 20. solutionsUff)(x) (cf. Sec. lll E and Fig. 8 For our example
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FIG. 21. (a)—(c) Reduced representation of various trajectories. Insets: spatial solutions at some emphasized points along the trajectories,
shown in the U,U") plane.(a) The periodic trajectory) > (x,t) (a=0.288,8=0.009 33. Inset: a point close tt{¥(x). (b) Two periodic
trajectories that belong to thé, family (outer,a=0.22, and3=0.0105; innera@=0.14 and3=0.0105. Inset: ap=4 point.(c) Trajectory
that connects the three solutions of tde family. (d) The time trace ofJ(K,) («=0.22 and3=0.018. Inset: ap=6 point on the inner
trajectory of(b).

the only realizable solutions alteﬁf)(x). The pair of solu- cations and new frequencies appear in the temporal spec-
tionsU{>(x) andU{»(x—5/k,) are unstable. However, at trum. In addition, there exisstructural bifurcations, where
a=~ agy (recall Sec. Ill A there exists a stable periodic so- the phase-space trajectory changes its shape discontinuously.
lution that passes near this pair of unstable stationary soluFhese bifurcations are understood as a consequence of the
tions. The projection of the trajectory of this solution is appearance of a connection between two unstable solutions:
shown in Fig. 21a). For future reference we denote this so- U{®)(x,t) and one of thep=4 class. The four members of
lution as U{P(x,t). In terms of our general notation this this class interact withu(>(x,t) at different sectors of the
time-dependent solution belongs to the family of solutions of(4,8) plane, causing sharp changes in the character of the
the first kindU, . The solutionU{>)(x,t) remains available  trajectory. At some values af the new time-periodic orbit is
for a finite range ofg values. stable. A typical example of such a trajectory is seen in Fig.
As explained in Sec. Il B, the&J, family contains infi-  21(b). At other close values ofr the trajectory acquires
nitely many solutions, all of which are unstable@t0. For  complex dynamics. Changing the parameters further one
B>0 there exists a class of solutions that become stablean discover orbits whose symbolic notation increases in
These are solutions whose spatial periodigitis harmonic  complexity. For example, in Fig. 2d) we see a trajectory
in ky (i.e., pAk/k; is an integer. In the current case this that passes near a solution whose symbolic word is
condition is obtained for various values pf For example, RgLoRyL1R;LoRgLg. It is obvious that the orbit meanders
when p=4 the stationary solutiofR;LoRoL, is stable at between the three solutions{>(x,t), R;LoRoL+, and the
a==0.001. Note that this is one of the class of fas4  |ast one. The changes in the apparent spatial patterns of our
solutions that appear in E¢3.22. At higher values ofe  time-dependent solution become more and more complex as
these solutions become time periodic. At even larger valueg passes near the various unstable fixed points that are iden-
of « they become unstable. tified in this example and shown explicity as insets in Fig.
We describe now a path in tiie,3) parameter space that 21. A time series of the total energy in this orbit is seen in
begins ata=0.28, and 5=0.0105. At these values the Fig. 21(d). The orbit exhibits the bursts that were discussed
temporal-periodic solutiothﬁS)(x,t) is the only stable one. in the previous subsections. There is no limit to how we can
As « is decreased, the solution goes through dynamic bifurmake the discussion more complex by choosing more modes
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FIG. 22. Left: reduced representation of a trajectory that converges to the cellular fixed (pbimtaxes are defined in Fig. 16.
£=0.01,k,=0.93, anda=0.6. Right: convergence time as a functionsofWe did not find convergence fer<0.001.

in the windowke (0,1). We explicitly gave the example Starting from the initial condition$5.2), the equation was
such that the complexity can be unfolded. It is our mainintegrated and the trajectory followed. A typical trajectory
proposal that the space-time complexity is in principle de-and convergence times for various values @fre shown in
scribable in this manner. Fig. 22. We found that foe >¢.,=0.001 the trajectory al-

Until now the fundamental solutions belonged to one fam-ways converged to the time-independent cellular solution
ily U,. Continuing along our path in parameter space, weJ,(x). For O<e=<g, the trajectories did not converge until
encounter new solutions that twist around members of that leastT=10 000. These results indicate that when there is
two different familiesU, andU,, . These new solutions can enough dissipation in the long-wavelength region the chaotic
be found by either decreasingor increasings. state is indeed transient.

Finally, we note that this type of solution is generic in the  This phenomenon is common to situations where there
sense that it exists for a wide range of parameters in thexist simultaneously a stable fixed pojid,(x)], a chaotic
(a,B) plane. It undergoes additional dynamic bifurcations asattractor, and a saddle fixed poiry gs)(x)]_ The boundary
the parameters are changed further into the space-time chef the basin of attraction of the attractor is the stable mani-
otic phase. The nature of the orbit as a mediator betweefbld of the saddle pointsee Fig. 19 As ¢ is increased from
different types of fundamental solutions remains the same. zero, a critical value . is reached where the chaotic attractor

collides with its basin of attractiofthe stable manifold of
D. Does sustained chaos exist? the saddle fixed poiptthrough a heteroclinic tangency. For

In the two-mode model the size of the attractor is a func-Yalues ofe above the critical value the chaotic attractor dis-

: : : appears. This phenomenon is calledundary crisis[33].
:Ir?arl 2];1zoin;jpﬁ):g?sttr;)egifigtrimtzie(,lss) a#gﬁ}@fﬁgri eC-:t- We conclude that our model exhibits sustained chaos as long
«(B).

ing this function is the rightmost line in the phase diagramaS the size of the ch_aotlc.attractor IS not too b.'g’ .e., the
(Fig. 15. Numerical experiments indicate that to the right of attractor does not collide with the edge of its basin of attrac-
this line space-time chaos is a transient phenomenon. tion - . o

Indeed, it has been suggested befafkthat all the “cha- These results indicate that even at a finite but small dissi-
otic” state’s of the Kuramoto-Sivashinsky equation are only ation, the chaotic attractor may not collide with the basin of

long-lived transient that always relax to a stationary cellulal cr;ncc()at“rlﬂﬁer crllj)ftiﬂepocl)gts.ibl\illﬁms; 'gﬁleif{(r%?;gelrgz cf{‘;acnzlijéi?
solution. In our terminology, this means that there is no sepa” : P y ylongt N
owever, all simulations done to the left of the critical line

ratrix between the chaotic part of the phase space and t . : : . .
cellular fixed pointU,(x), i : the chao?ic part IFi)es within N Fig. 15 produced sustained chaos for arbitrary simulation
e times.

the basin of attraction of the cellular fixed point.
Our models allow us to shed some light on this important

issue and to show in which sense it can be assessed quanti- VI. SUMMARY

tatively. We will show that for strong linear dissipation, the . . . ) )

chaotic state is indeed transient. To this aim consider the 1€ Main point of this paper is that spatiotemporal com-

model plexity can be discussed, at least in the class of Galilean
invariant models studied above, in qualitative terms not un-
0, k=0 like those of dynamical systems. Usually partial differential
e k<1, k#0,~k equations give rise to suph g:omplex dynamics that i_t is hard
L(k)= ' ' =0 (55 O disentangle the behavior into its elements. For this reason
a, k==*Ko we opted in this paper to introduce a simple enough model,
k2—|K|4, |k|=1. with only two linearly unstable modes, whose dynamics in

function space could be analyzed relatively easily. One im-
The & term (¢>0) introduces dissipation at long wave- portant ingredient in our analysis is the calculation of the
lengths (6<k<1) but leaves the model Galilean invariant. stationary solutions. There are infinitely many such solu-
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tions, but we have been able to classify many of them and2.10], we introduce a small perturbation
show that their number grows exponentially as a function ofU (x,t)=Uy(x) +v(x,t). Linearizing Eg. (2.2) gives the
the size of the system, at least in the scaling limit of smallequation forv (x,t):

exiting modes.

There are regions of parameter space for which all the
stationary solutions in a given portion of function space are
unstable. This does not mean, however, that they are irrel-
evant for the dynamics. On the contrary, their neighborhood.. . . . .
is repeatedly visited by the orbit in function space. The demc—‘L_"nC_e Eq(Al) is autonomoAL:s with respect to time, 'FS solu-
onstration of spatial complexity in terms of the topological i0N IS Of the formu (x,t) =e™v(x). The general solution of
entropy translated now to a statement about spatiotemporaX) can be written ag (x)=e'%*v(x) where Q e[0Kko)
complexity. The orbit in time as a function of time makes and?(x) has the same periodicity &s,(x). Therefore, the
nearby visits to infinitely many stationary solutions that areperturbatiorw (x,t) has the form
all unstable. When the orbit comes very close to some solu-
tion the spatial function that is seen is very close to the
stationary solution, but this changes in favor of another one
as the orbit nears another stationary solution, etc. Transitions
between solutions of two different families that are qualita-
tively different, such as the families of the first and the sec-
ond kind discussed above, guarantee that the observed spatial o ) ) )
shape changes wildly while the orbit goes through its gyraJnsertlng th|§ .|nto Eq(Al), we obtain the linear equations
tions. Clearly, when the orbit changes from the vicinity of for the coefficients, :
the short-wavelength solutions to the vicinity of long-
wavelength solutions, the inevitable phase slips that are re-
quired form topological defects will appear. These are the
consequences of the spatiotemporal complexity and not vice
versal 34].

A (X, t)=LIv(X,1) ]+ dJv(X,H)HUn(X)]. (A2)

v(X,t)=eMel Q> iy einkox, (A2)
n

Noi=L(Iko+ Qv (Iko+Q) 2 ai_gvn, (A3)
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APPENDIX A: STABILITY
OF THE CELLULAR SOLUTION
AND ITS DESCENDANTS

1N=—Kao - K (AD)

The stability matrix couples R,./Ak modes. Using only
five modes &_»,,...,a,) to calculate the stability of the cel-
lular solution approximately, the matrix reads

1. Stability analysis of the cellular solution

In order to check the stability of the cellular solution
Un(x) as a function of the parameters and 8 [see Eq.

The cellular solution becomes unstable when one eigenvalue of the stability matrix crosses the imaginary axis. Two special

[ L(—2ko+Q) —(—2kp+Q)a_; —(—2kg+Q)a_, 0 0 7
—(—kotQ)ay L(=ko*+Q) —(=kotQla_; —(—ko+Qa_, 0
—Qa, —Qay L(Q) —Qa_; —Qa_, (A5)
0 —(ko+Q)az —(ko+Q)ay L(ko+Q) —(ko+Q)a_;
L 0 0 —(2ko+Q)a; —(2ko+Q)ay L(2ko+Q) |

cases ar® =0 andQ=Kk;. At any other value of) the characteristic of the stability matrix can be written as a polynomial

in a:

5
ZO fo(ko,Q;\)a"=0.

(A6)
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On the neutral curvécritical line) Re\}=0, f is zero and hence we can find the neutral cugvea;(Q;ky) by solving Eq.
(A6) to second order imv:

1(Q:k ):_f_lz L(—2ko+Q)L(ko+Q)L(2ko+ Q) A7)
B0, 4[(2K0)2 = 1](Ko+ Q)[(2Ke+ Q)L(— 2k + Q) — (—2ko+ Q)L(2Kg+Q)]"
[
We see thawr is positive only when (+ko<Q<kg). We Swzn2( Q) for m,n even

conclude thati) the system is stable against perturbations in

the range|Q|<1—ky and (i) a; has an extremum value, S2, (Q)=

. . . . /2,n/2

i.e., the system is stable against any perturbation when

a> aeg(Kg). The solution of Eq(A6) to third order ina has 0 for otherwise,

two branches where one branch behaves like the second- (A9)

order solution and there is a gap between its maximum and _ - . .

the minimum of the second branch at where S(Q) is the Stabl'lty matrlx(A4). Accordlngly, the
eigenvalues of the matri®®(0) are the union of the set of

ax(Q=0:ko)=2k3[ (2ko)?—1]. (A8)  eigenvalues of the matriceS(0) and S(ky/2). S(0) has a
translation zero eigenvalug and a Galilean zero eigenvalue
Our basic model is invariant under parit9— — Q. Since a A\, (see the preceding sectjorit the same poin§(ky/2) has
—Q perturbation is equivalent to l,,— Q perturbation, the only one zero eigenvalug, . Whena is increased above the
neutral curve must be symmetric arou@e-ko/2 and there-  bifurcation pointandQ=0), the degeneracy of the two zero
fore agy= a1 (Ko/2;Ko). eigenvalues is removed and one of them becomes positive.
The stability matrix is singular whenQ=0 since When|Q| is increased, the values of thg change discon-
L(£ko+Q)=ad(Q). As a result, the matrix acquires a sec- tinuously to a negative value whibg, changes its value in a
ond zero eigenvalue. This eigenvalue manifests the Galileagontinuous way. The global stability picture Ui,‘f) is simi-
symmetry of the model equation. lar to that ofUy,. In the (a,Q) parameter space there is a
Numerical calculation of the eigenvalues of the stability neytral curvea(?(Q;ko), where the upper eigenvalug
matrix for the Q#k; case was done using seven modeseggses the imaginary axis. However, in contradt to(Fig.

(a3, ... ,83), as can be seen in the example in Fig. 3. Add-3) {he unstable region isbovethe neutral curve and there-
ing higher modes to the calculation does not change the neys .. U® is unstable at any value of

tral curve significantly. )7 A. . i
S iKo), like ;Kg), has an extremum at
WhenQ=k; one should add the contribution Q) =/ (Zc)vi é&%’(fjm-ko) Aotll(tgat OLoint a secondary period-

to the stability matrix. Numerical calculation shows that the “ext ;
eigenvalues are in the negative half plane, wherdoubling bifurcation to a new solutionU{’(x)
a>a;(Ky,Ko) and B<Bo(a;k; ko). An example can be =3ib,,e' ("% takes place. As withS'?) [Eq. (A9)],
seen in Fig. 3. We conclude that the fixed pdihis stable at the bifurcation point the stability matrix of the new
when a> ag, (ko) and 8< Bo(a;Kq,Kp). solution S? can be decomposed into four matrices:
Before we continue, let us look at the behavior of the{s(2)[Q+ n(ke/4)],n=0,1,2,3. 5(2)(Q) contributes one
eigenvalues of the stability matrix as a function of the twozero eigenvaluex,, but it also contributes a positive
parametersy and Q (Q#ky). On the lineQ=0 there are eigenvalue\y. Accordingly, beyond the bifurcation point
two zero eigenvalues respecting the two symmetries of thehere will be one positive eigenvalue and tecondeigen-
model equation: translation and Galilean. Because of th@alue will cross the imaginary axis on the neutral curve
translation symmetry there is a row of zeros in the stabilitya(zz)(Q.k )
matrix [ Sy,(0)=0] that contributes one zero eigenvalue ! o
This symmetry is continuous and whép deviates from
zero, \, follows Q continuously; first\, becomes negative
and then it changes sign on the neutral curve. The second We will show here that the solutiohlﬁf)(x) has zero
symmetry is Galilean symmetry. This symmetry yields an-eigenvalues at, and o [see Eq(3.43)], as in transcritical
other zero eigenvalug,. However, this symmetry is dis- bifurcations of low-dimensional dynamical systertdi-
crete in our model and whe®|=0, \4 leaps to a negative nary differential equations However, in contrast to low-
value of the order of-« and it stays negative for any dimensional dynamical systemb®)(x) is unstable at all

Sm-1)2(n-1)12

k
Q+ 50) for m,n odd

3. Stability analysis of the period-three solution

|Q[>0. values of the control parameter Like the stability matrix of
Un(x) [EQ. (Ad)], the stability matrixS(Q) at a pointa= &
2. Stability of the period-2 solution is defined by
The stability of the period-2 solutiot{?)(x) can be S 1(Q)= 8, L(Iko/3+ Q) — (Iko/3+Q)b; _(&).
tested using the same method that has been used to calculate ' (A10)

the stability of the solutiord,(x). At the bifurcation point _ 5
the stability matrixS? can be written as a combination of We also defineB=S(0). When &> ag, U{®) can be ex-
two uncoupled matrices panded neai: U{>)(a)=U® (&) + (a— &)v. v is the solu-
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tion of the equatioBr=b, , whereb,;=(0,00,(&),0,0,..). n n n n \3

That equation has a solution only if the solvability condition L :L(_kO) / £ ko= §k0) - (gkO) : (B4)
b'b,=0 holds, wheré' is the zero left eigenvector . If

B has a nontrivial zero eigenvector, then genericab) {
#0 and thereforeb'b,=(b"),b,(&)#0. Therefore, when
a>agq, B(@) has a zero eigenvalue only at the bifurcation
point &=a, where @');=0. Due to the parity symmetry
B(a.) has two zero eigenvectafsquivalently, air;, U, (X)

Now we substitute Eq(B3) into the equations for théth,
2 th, and2th modes and we get a system of three equations to
solve:

. . A 2+V3 2 1 d 0
is unstable to two perturbatior@=Kky/3 andQ= 5kg]. The 2
two zero eigenvalues cross the imaginary axis in opposite V3 —(1%v3) —(1+H) dy|={ O],
directions, as a function af — a 1 1+v3  —(1=v3+H)/ \de 1
(BS)
d RENT J REN
IRENT _p IREM o (Al |
da=acl, da=ac)l, where the value oH is equal to
Therefore,U{*)(x) is unstable on both sides of, . 1 L
When a=a, the expansion of U® is U{*(«) H=3— Lo (B6)
=U{(&)+ (a— &) %%. Thenv is the solution of the eigen- 5*V3

value equationBr=0 with the normalization condition

211413V —1;3=Dby1(@). Therefore, one eigenvalue &) o , )
changes sign ak,. Yet A~ is still positive ata, and there- Substituting the solution of EqBY) into Eqg. (B3) deter-

fore U(3)(x) is unstable. In addition to these two isolated mines the numerical values of tikg. Now we can calculate

zero eigenvalues3(0) has two zero eigenvalues at anylue d7 from the.e_quatio_n for théth mode and check that it is
to the translation symmetry. One of the zero eigenvalue dped negligible. Like then=3 example, W.h'Ch has a so-
stays away from zero whe®#0. We conclude that the ution only for ky>3/4, Eq.(B5) has a solution only when

L . (3) .. - . Lg is positive, i.e. ky>5/6.
E)seﬂr?gt:blsslgtug:]t;hvélﬁ)é ;lfmllarly to the period-2 solution, The two solutions found are shown in Fig. 5. Similar

m=>5 solutions exist fos=3 ands=1. The only difference

_ o is on the right-hand side of EqB5), which is (0,1,0 for

APPENDIX B: AN S=M=5 SOLUTION s=3 and(1,0,0 for s=1. No solutions of that type exist for
OF THE U,, FAMILY s=4 ands=2.

We start by |00king form=5 solutions with the same In addition to the two periOd -5 solutions that were fOUnd,
symmetry. We truncate the set of equations aftem2(l) there are two additional solutlortLt(x) andU(x) that can be

modes, assuming that the higher modes are much smallgiired such thaR,[U(x)]=U(x). We will assume now that
than the first eight modes. To lowest orderanve assume  their scaling is

for these modes

\/\ bn/m: al/2+(l/2)[(|n|71)/mjcn' (B7)
for n odd

ko " _
[ (81 The I_owest—order equations for theys, ... ,b,s modes have a

—dp, for n even, solution

Ko
where thec,, andd, are functions okg only. The equations bs=v2bys,  bays=—bys,
for the Zth andith modes have three solutions: V2

c;=(1=v3)cs, Cs=cCs, (B23 1
cs#0, ¢,;=cs=0. (B2b) bys=—Dbys, bgs=| 1+ v bys. (B8)

Solution(B2b) is similar to solution(3.7) in the sense that ] ] )
its principal spatial frequency is ndt, but Zk,. We will ~ The lowest-order terms in the nonlinear part of the equation
ignore that solution for the time being. If we assumefor thebss mode are
c,<cy(n=1,...,5), then the equations for tH¢h and Eth
modes give D1/5D4/5+ D2/sb3y5. (B9)

Aol = dele = (cy)? (B3) According to the scalingAnsatz (B7), these terms are of
8873 8 order o, while the linear part is of orde®? However, by
zi‘/g virtue of the relationgB8) the expressionB9) is exactly
zero. Hence the amplitude of the solution is determined by
where the next-order terms in the equation for thgs mode:
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1 1
b+ vVZbyst — bgs—bgst | 1+ — | b
6/5 7/5 ‘/2 8/5 9/5 ( \/2 10/5
- (1+ 1) @ (B10)
v2) Ko

The equations of thbgs,...,b1g5 Modes, to first order i,

give
5-2v2| 1 1) 1,
bgis= — 2 L_6b1’5' bys=—| 1+ sl G bis
1) 1 5 5
bgs=—| 1+ v L_8b1/5: bgs=| 1+ — L bl
3+2v2| 1,
D1g5= — 2 L_lobl/sa (B11)

where L, is defined in Eq.(B4). Now we substitute Eq.

(B11) into Eq.(B10) and we find two solutions folpys:

C
bl/5: + —26‘(, (812)
kO
where the constantC is a linear function of

1L (2Ko) ..., 1L (ko). This confirms theAnsatz(B7).
In this section we found two solutions fe=m=5. For
anys smaller tharmm, Eqgs.(B8) and(B11) still hold because
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1 L
§i;|CiCjC|(|M=j+IM:j+jMf|)

=i§j)| cicicl[(I=i1=])8 4 —(I=i+])éi_j,
—(I+i=j)é-i+j1]=0.

Therefore, than components otp(c;1) are not independent.
So atu=1 Eq.(C1) hasm—1 degrees of freedom amd— 1
conditions to satisfy.

The quadratic formp,(c;0) is identically zero. It is easy
to see that than—1 quadratic formse,(c;0), |<m, are
indefinite and therefore every equatio#(c;0)=0 has a
non-trivial solution. Every quadratic equatiapy(c;u)=0
can be reduced by an orthogonal matfixo the form

r

h
;AE?— > \cE=0,

i=h+1

(C3)

where all the\; are positive,c=Pc, r is the rank of the
matrixM'(x), and I<h<r. One can see that the solution of
Eqg. (C3) is an unboundedni— 1)-dimensional object in the
Euclidean subspacB™ composed of one or more sheets,
which passes through the origin, and therefore must intersect
C along (m—2)-dimensional closed hyperlingg'. The so-
lutions of ¢(c;0)=0 are the intersections of the— 1 hy-
perlines H', 1<m, which define a setP(0) of (zero-
dimensiongl points inC. Since we already discovered that
Eg. (3.18 has 2" solutions, we conclude that the sB(0)
contains 2" points.

they solve the five first-order equations for the modes we want to check what happens to the solutions of

bys.....bgs. The only difference is in th€)(a®?) equation

&(c;u)=0 as u deviates from zero. The quadratic form

for the bs;s mode[Eq. (B10)], which should be replaced by ¢ _(c:u) is equal tow ¢(c;1) and thereforep,(c; 1) is not

an equivalent equation for theys mode. Accordingly, the
solution (B12) holds for anys<5, while the value of the
constantC depends ors.

APPENDIX C: EXISTENCE OF SOLUTIONS

The vectorc [see Eq.(3.13] defines anm-dimensional
Euclidean subspace of the function spécéVe denote by
the (m—1)-dimensional unit sphere iR™. The bilinear
equation

di(Cu)=0 (Cy

does not depend on the magnityde Therefore, its solution

is a point on the spher€. This means that apparently Eq.
(C1) hasm conditions but onlyn—1 degrees of freedom.

However, as we will see momentarily, the equations

¢,(c;1)=0 are not independent. Let us examine the scalar

product
(axum;(c):ZI |c|i2j CiMj;c; . (C2

By renaming the indices, this quantity is equal to

identically zero when.>0. However, we know that gt =1
the set of equationgh(c;1)=0 are not independent. There-
fore, if there is a solution to then— 1 equationsp(c;1)=0,
I<m, andc,,#0 then it must also solve theth equation
dm(c;1)=0. So if we have a solution to thre— 1 equations
d(c;u)=0, I<m, at anyu, andc,,#0, then we are guar-
anteed that it solvee(c;u)=0at u=0 and 1. Accordingly,
we define the seP(u) as the set of solutions of the—1
equationseg,(c; u) =0, | <m. (Notice thatc,,=0 means that
the periodicityp is smaller tharm.) As w is changed, the
points of the seP(x) move on the spher@ and they can be
annihilated in pairs, as can be seen in Fig. 7.

APPENDIX D: PERIODIC SOLUTIONS
In Sec. IV C we found the following coupled ordinary
differential equations for the functiomay(x) and my(x):

[ 3Mg(X) + |my(x)[2+|my(—x)|2]+ L[ Me(x)]=0,

(Dla)

dy(molmy|) +i(Ko+ dxepr)mo|my| + 7 %1L, [my]=iw|my],
(D1b)

where ¢1(x) is the argument ofm,;(x). The complex equa-

tion (D1b) can be written as two real equations
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L mo(x)|my(x)|]1+ Re[W(x)e~"91¥}1=0, (D1c) same spatial frequency. We will start with E@@1c). The
k=0 mode of the derivative term is equal to zero and hence

[ko+ Ay (X) IMo(X) My (x)] + Im{ ¥ (x)e 410} that mode must be zero in the fgx)e '*1™} term. The
antisymmetric part of this term fulfills that condition trivi-
= w[my(x)|. (D1d) ally. The symmetric part accomplishes the zero condition by

convolving all the Fourier modes in the interda=[0,3].
Consequently, it is harder to analyze the symmetric part than
the antisymmetric one. Hence we will only examine the an-
tisymmetric piece.

The next step is to look for a solution that, similarly to the
fixed point solution, has the energies of(x) and m;(x)
concentrated at low spatial frequencies. TAasatz for

mo(X) is Neark=0 we can use the facts thif (k)<L (0)=«
Mo(X) = Mfig(X) + Ro(X), [see Eq.(D4)] and thate "1™ has only a few modes in
Fourier space to estimate the antisymmetric piece by
k k . .
My(x) = sin(%x)w(%x) , (D2) asyni R(—:{‘l’(x)e"‘/’l(")}]:asyn( wak:0e7|¢1(x)})

= aM,asym{Re{f e~ 1)),
where w(6) is defined in Eq.(4.3) and Ry(x) is a small M asymRelMy g N

deviation. EquationD1b) becomes an eigenvalue equation (D8)

for my(x): . . . L
1(%) The Fourier transform of an antisymmetric function is purely

Z(M _: , D3 imaginary. Using the notatiok=n(k4/2) we can rewrite the
(Mo)m ()] =T wma(x) (b3 antisymmetric piece of E¢D1c) in Fourier space
where

Ky M| ~E % —igy
Z(Mo)55k0+Mo(ﬁx“ko)mo(x)- (D4) Mon ERe{(mo|m1|)n}— 2 alm{M; —o(e )n

Due to the Galilean symmetry, we expect to find left- +[Mypo(e' ™) -]}
traveling waves whereny(x)>0 and right-traveling waves (D9)
where mg(x)<0. Hence we look form;(x) such that

Imy(x)[>]m* (—x)|, wheremg(x)>0 and vice versa. So DefiningC, andD,(®,) by

the ansatz fom,(x) is

Cn=n(o|My|)y, (D103
m;(X) = MMy (X) + Ry(X), (D5a) _ i _ e .
Dn(Pq)=Myy—o(e " ")+ [Myg=o(e™" ") _,]*,
— - K1 (D10b
M, (x)=a,(x)e'*1™d > X/, (D5b)
we can rewrite Eq(D9) for any moden as
where R;(x) is a small deviation andi(6) is the double k, Im{D (D)}
periodic asymmetric rectangular wave 0_1: —_m Uy (D11)
a Re(C,}
. m
1 if Es o< In particular,
d(6)= L 3T (D6) IM{D2(Py)}  IM{D,(Py)}
1 if —<¢<27w = D12
2 Re[Cy} Re{Cy} (D12

0 otherwise. Now we can solve Eq(D12) numerically[36], using the

We see that the pointsk(/2)x={0,m/2,m,3m/2}, where Ansdze(D2) and(D7) to find ;. A solution is

|my(x)|=|m;(—x)|, are sinks and sources of traveling B.=277 (D13
waves. In Fig. 12 we see the fietd;(x) as it was measured 1=t
from the numerical integratiof85]. In order to gain an ana-

. . . . itution of this resul k into E¢D11) giv
lytical understanding of the equations we must takeaslmplgmz)sum0 of this result back into B(P11) gives

Ansatzfor m;(x). We will use the simple analytical form a Im{Dy(®y)} «a
. . °=k_1 —E - k—1(37-r)(0.019. (D14
al(x)=1+cos(Ex)W<?X), (D73
We turn now to Eq(D1a). We can rewrite it as
h1(X)=D1a1(x). (D7b) 1, _ 1, .
_ , _ o EMoé’x[mo(X)]"‘ Mo L[ Mo(X)]= — dx ERO(X)+MomoR0
Now we will solve Egs(D1) in Fourier space by substituting
the Ansdze (D2), (D5), and (D7), calculating the Fourier
transform (see Appendix E and comparing terms of the +my(x) |2+ | my(—x) 2). (D15
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At the onset of a periodic solution the right-hand side is zerow[ (k,/2)x; 9]:
Using Eq.(E4),

K 4BM, 2

2
5 = M2 —3-.— -0 (D16) -2, n=0
. . n(9)= (ED
So the onset of a periodic solution occurs at 2 ™
——sinn|=—-9]||, n#O0.
nwT 2
3
Be= 32 ——=kiM=0.0527%. (D17
d[ (kq/2)x;9]:
This result is in accordance with the stability matrix estima-
tion B.=(kq/kg)«. The last step is to calculate from Eq.
(D1d). For smalln we can approximate it by r 1
= n=0
21
(ko= kq)(Mo|my|) = w|my|,. (D18 _
i T
Equations(E6) and (E7) for then=1 mode give An(9)=9 — 1~ COS{”(E“? } n odd
Ko—k1 4 codnl=—9|l=1! n even.
w=Mj - (D19 L nmw 2 '
(E2
We can compare now the analytic results to a numerical
simulation. With simulation paramet 0.93,k;=0.06,
a=1.2) we obtained P o™ o WL (ke/2)x; ]d[ (ky/2)x; 9]:
My w Be
analytic 3.6 2.74 0.064
numerical 3.8 2.87 0.0691 = n=0
We see that although the estimaf7) for m,(x) is crude, ™
the analytical results are close to the values from the numeri- 1 T
cal integration. An(D)={ — 7 snni 5 =9 n even
APPENDIX E: FOURIER TRANSFORM — i [sin n(z— 03 n=odd.
OF SOME RELEVANT FUNCTIONS \ nm 2 E3)
In the periodic solution the smallest spatial frequency is
ki/2. Hence the only relevant spatial frequencies are
k=n(k;/2). Mo(X):
0, n=0
i i T
i(—ﬁ——sinz(——ﬁm, n==1
Af={ “ 7 nm 2 (E4)
! i 1 T ) | i 1 il ) otherwise
(n—1) sin (n—1) > (I'H-—l)ﬂTSI (n+1) > .
my(x):
An(p,o,9)= ( m(p, o)+ = [JZm 1(p. )+ Joma(p, U)]) An-—om+2
% Jomea(p.o)+ 5 [sz(P o)+ Jom2(p, U)]) AN i1 - (ES

[My(x)][:
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(1 1 (=
E—;S|n(§—ﬂ , n=0
N S(w 8 1 [ (= ey
+-Co E—f} to- TS 25—1‘1‘ , n==
An(9)= i T 1 T
—ECO{H<E—QH—WSIH(n—l)(E—ﬂ”
1 . (77 )
\_WSI (n+1) E—l(}
W e
+¢m\n n-1 n+1 (E6)
0, n odd.
Mo(X)[My(X)]:
An(ﬁ)=%[£[ 12(00{(n 2)( ”—%even} (n#2)
_2[ {(I’H—Z) ”_5n,even] (ngﬁ—Z)
_1{ F{ n_l)(g_a”_ﬁn,even] (nil)
—m ISIF{(H‘?‘].) ”_é},even]} (n#-1)
29
(5n2 5n72)+ (5n1 n,1)]y
[0, n odd,
5n,even= 1, n even. (E7)
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