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Scenario for the onset of space-time chaos
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The onset of space-time chaos is studied on the basis of a Galilean invariant model that exhibits the essential
characteristics of the phenomenon. By keeping the linear part of the model extremely simple, one has better
than usual control of the classes of available stationary solutions. These stationary solutions include not only
spatially periodic but also a large set of spatially chaotic solutions that can be characterized by words of a
symbolic language. The main proposition of this paper is that space-time chaos in Galilean invariant models
can be understood in a qualitative fashion as an orbit in the space of functions that visits words in this language
in a random fashion. The appearance of topological defects and other ‘‘signatures’’ of space-time chaos are a
natural consequence of this dynamics. Finally, we construct a simple demonstration of this scenario.
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I. INTRODUCTION

The study of space-time chaos is hampered by the
that it is a phenomenon that appears in systems describe
partial differential equations~PDEs!. In comparison, tempo
ral chaos is adequately described by ordinary differen
equations. For the latter there is a well-established qualita
theory that forms a convenient and solid basis for the
scription of temporal chaos. The lack of a qualitative theo
of PDEs confined much of the theoretical work on spa
time chaos to numerical simulations of model equatio
Even though there has been much progress in relating b
symmetries of physical systems to the type of model eq
tions that need to be studied~‘‘normal forms’’!, the actual
understanding of the onset of space-time chaos and the c
acterization of what happens after the onset did not exce
descriptive mode. Signatures of space-time chaos, suc
topological defects and disordered cellular patterns, bec
surrogate to the phenomenon itself, with descriptions suc
‘‘defect mediated turbulence’’@1# and ‘‘spatiotemporal inter-
mittency’’ @2#.

Popular models to analyze space-time chaos have b
the Ginzburg-Landau and the Kuramoto-Sivashinsky eq
tions. Some important work has been done to map the
namical behavior in such models and to discuss the existe
of attractors. Examples of such work can be found, e.g.
@3–5#. The main difficulty in understanding the onset
space-time chaos is that even these relatively simple e
tions lead to such a huge variety of phenomena that it is h
to disentangle clean scenarios. Typically there is such a c
plex array of dynamical phenomena that appear concurre
that they tend to obscure the essential issues related to s
time chaos. Even the definition of space-time chaos is
entirely obvious. In some sense, the simplest models
have been used are too complicated. It becomes necessa
simplify further with the hope that such a simplificatio
would lead to more feasible analysis.

The main aim of this paper is to propose such simplifi
models. We will construct a model that enjoys the same s
metries as some of the popular models of space-time ch
571063-651X/98/57~4!/4106~29!/$15.00
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but whose analytic structure is sufficiently simple to allow
reasonable understanding of the classes of solutions tha
available. This will allow us to classify families of stationar
and time-dependent solutions. More importantly, we will d
velop a picture that describes how the orbit in function sp
visits these solutions much like hyperbolic fixed points a
visited in low-dimensional dynamical systems. What com
out is thus a qualitative picture of the onset of space-ti
chaos and an understanding of how some of the signature
this type of chaos appear as a consequence of the dyna
in function space. In some sense the emerging picture
reminiscent of phase-space orbits of dynamical systems,
the stationary and the time-periodic solutions being organ
ers of complex behavior. We believe that similar pictures
available in standard models of space-time chaos with
same symmetries, but they are harder to discern becaus
the higher degree of complexity. The structure of this pa
is as follows. In Sec. II we present the model that will
discussed in the rest of the paper. After specifying the ess
tial symmetries and features of the dynamics, we propos
generalized equation that reflects all these properties
which has only one or two linearly unstable modes. A
though infinitely many modes appear in the observed dyn
ics, the simplicity of the linear operator is the key to o
ability to develop a deeper understanding. In Sec. III
begin the discussion of the stationary solutions of our mod
The aim is to understand as many stationary solutions
possible since later we describe the dynamics as being o
nized by these stationary solutions. In Sec. III we focus
the family of solutions whose typical wavelength is mu
smaller than the size of the system. We show that there i
infinity of such solutions and that they can be organized w
the help of a symbolic grammar. With this device we de
onstrate that the system has spatial positive topological
tropy in the sense that the number of available station
solutions increases at least exponentially with the size of
system. After some analysis of the spatial bifurcations
these stationary solutions we turn in Sec. IV to the discuss
of a family of solutions whose typical wavelength is of th
order of the system size. We find two solutions in this fam
4106 © 1998 The American Physical Society
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57 4107SCENARIO FOR THE ONSET OF SPACE-TIME CHAOS
and we discuss their stability under temporal perturbatio
This stability analysis calls for some special tricks sin
there exist infinitely many modes that are marginally stab
From the conceptual point of view of describing spatiote
poral chaos, Sec. V is the central section of this paper
attempts to offer a comprehensive picture of the dynamic
qualitative terms using the knowledge of the stationary so
tions and monitoring the orbit that moves between them
function space. In some sense the emerging picture is a
eralization to function space of the common picture in lo
dimensional dynamical systems. To demonstrate these id
we construct a simple example in which it is easy to iden
the spatial structures that are being revisited by the temp
solution. It is possible to track a series of bifurcations th
connect the basins of attraction of temporally unstable s
tions of the type discussed in Secs. II–IV.

II. MODEL

One of the important insights achieved in the study
space-time chaos is that given some symmetries, the dyn
ics of the physical fields, after appropriate scaling, is
scribed by universal equations. The structure of the equat
is completely determined by the symmetries of the phys
system. In this paper we will be concerned with model eq
tions in one spatial dimension that respect four symmetr
translation in time (t→t1t), translation in space (x
→x1a), parity @U(x,t)→2U(2x,t)#, and Galilean sym-
metry

U~x,t !→U~x1ct,t !1c. ~2.1!

A general form of a dissipative, first order in time, sourc
less scalar field model that obeys these symmetries is

] tU~x,t !5L@U~x,t !#1N@U~x,t !#,

~x,t !PR13R1 , ~2.2!

where the nonlinear operator is

N@U~x,t !#[U~x,t !]xU~x,t !. ~2.3!

The linear operatorL@ # can be represented in the functio
space of its eigenmodesêk(x). We denote this function
space byU and a vector inU by U(k) ~where the indexk
takes on discrete or continuous values; also see below!. The
spectrum of the linear operator is denoted byL(k):

L@ êk~x!#5L~k!êk~x!. ~2.4!

A solution ~orbit! in function space will be the time
dependent vector

U~k,t !5E dx U~x,t !êk* ~x!, ~2.5!

where the asterisk denotes the complex conjugate. The
eration of the linear operator in real space is expressed

L@U~x,t !#5E dk dy êk~x!L~k!U~y,t !êk* ~y!. ~2.6!
s.
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The four symmetries place restrictions on the possi
forms of the linear operator. We choose the eigenfunction
the translation operator as the basis for the function spacU.
A sufficient condition for the linear operator to ensure G
ilean symmetry is

L~0!50 ~2.7!

and parity requires

L~2k!5L~k!. ~2.8!

We also requireU(x,t) to be a real field. In this paperL@ # is
purely dissipative soL(k) is a real operator. This class o
nonlinear models conserves antisymmetry and our stud
restricted to the subspace of odd functions with perio
boundary conditions

U~x1L,t !5U~x,t !,U~x,t !52U~2x,t !. ~2.9!

In order to have a nonvanishing solution for any timet,
one needs either external forcing or unstable modes~positive
eigenvalues! in the linear spectrum to inject energy into th
system and stable modes~negative eigenvalues! to dissipate
energy and stabilize the solution. In this paper we will n
discuss models with external forcing, so the models that
are interested in must have unstable and stable bands. W
the scaling ink space such that the boundary between
two bands is positioned atk51. Two additional length scale
appear in the problem:~i! the system sizeL or the k-space
grid sizeDk52p/L and~ii ! kmax or the real-space grid siz
Dx5p/kmax.

Known models of the class discussed above are
Michelson-Sivashinsky equation@L(k)5uku2k2# and the
Kuramoto-Sivashinsky equation@L(k)5k22k4#. The
Kuramoto-Sivashinsky equation is a well-known examp
possessing ordered and spatially chaotic states@4,6–8#. The
spatiotemporally chaotic state is characterized using two
ferent languages. In the statistical approach one characte
this state by its long-wavelength average spectrum@5,9#. The
other approach looks at the short-wavelength cellular str
ture @k;O(1)# and at the topological defects that appe
together with the ordered structure. These two descripti
express two aspects of one single phenomenon. Any atte
to understand space-time chaos should deal with b
branches of the spatial spectrum.

The analysis of the Kuramoto-Sivashinsky equation
complicated for two reasons. Owing to the large number
unstable modes@;O(L)# @10,11# the space-time picture
seems stochastic with complex dynamics that involves
splitting ~in one spatial dimension! or creation and annihila-
tion of topological defects~in higher dimensions!. The sec-
ond reason is the lack of controlled transition from the
dered phase to space-time chaos. The only control param
of the Kuramoto-Sivashinsky equation is the system sizeL.

In order to have control over a system with many degr
of freedom we decide to generalize the possible linear op
torsL@ # to include integro-differential operators, i.e., we r
lax the demand of locality in space. We suggest and stud
model with only two linearly unstable modes as a simplifi
model that contains the important features of the Kuramo
Sivashinsky equation. In this model only two spatial mod
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4108 57GOREN, ECKMANN, AND PROCACCIA
at the two extremes of the unstable band are unstable, w
all other modes in the unstable banduku,1 are marginal~see
Fig. 1!. In other words,

L~k!5H ad~ uku2k0!1bd~ uku2k1! if uku,1 ~k1!k0!

k22k4 if uku>1.
~2.10!

This model has three principal control parameters:a, b, and
the minimal wave numberDk or the system sizeL. One
control parameter~a! gives us control over the shor
wavelength part of the spectrum of the solutions of
model, while the other control parameter~b! enables us to
control the long-wavelength part of the spectrum. In the f
lowing sections we will show how by varying the contr
parameters the model~2.2! and ~2.10! exhibits ordered pat-
terns, spatial chaos, temporal chaos, and space-time c
Throughout the text we will point out similarities betwee
solutions of our model and of other Galilean invariant mo
els.

III. A FAMILY OF STATIONARY SOLUTIONS
OF THE FIRST KIND

Any study of a dynamical system should start with
analysis of its fixed points, and in our case, these are
stationary solutions. The first family of stationary solutio
that we discuss depends mainly on the value of the param
a. Qualitatively all these solutions have strong spectral co
ponents withk5k0 and its subharmonics. To understand t
nature of the solutions in this family we begin with th

FIG. 1. Linear spectrum of two Galilean invariant models.
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analysis of the simplest solution of this type. This type
solution has already been discovered in the context of
Kuramoto-Sivashinsky equation@7#, but there one has a ban
of such solutions.

A. The cellular solution

Consider a long-wavelength (k;k0) periodic cellular so-
lution of model~2.2! and ~2.10! of the form

Uh~x!5 (
nÞ0

ianeink0x, a2n52an* . ~3.1!

~Because of the Galilean symmetry we may takea050.!
When Eq.~3.1! is substituted into the model equation, a
infinite set of coupled nonlinear algebraic equations is g
erated. To enable analytic calculations, we reduce the n
ber of degrees of freedom in order to find an approxim
solution to this set of equations. We anticipate that the a
plitudes of the linearly stable modes decay exponentia
with their spatial frequency, and by disregarding the sho
wavelength modes we form a finite set of equations. In p
ticular, assumingua3u!ua1u and choosinga1 to be purely
real ~antisymmetric solution! we find

a152Aa@~2k0!221#, ~3.2a!

a252
a

k0
. ~3.2b!

If we extend our assumption touan12u!uanu(n>1) thenan
depends only onal , l ,n, and a recursive formula foran can
be easily found:

an5
1

2

1

~nk0!2~nk0!3 (
l 51

n21

alan2 l ~n.2!. ~3.2c!

A comparison with a numerical simulation~Fig. 2! confirms
the validity of this construction.

The solution~3.2! is a fixed point in the phase spaceU.
The issue of stability of these solutions requires in princi
the study of infinite-dimensional matrices. The reason is t
the basic solution~3.1! contains infinitely many Fourier
FIG. 2. Stationary cellular solution~k050.93, a50.7!. Left: comparison of the numerical and analytical spectrumuUh(k)u. Right:
Uh(x). Inset: graph ofUh(x) vs 2]xUh(x) ~dashed line:U850!.
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FIG. 3. Stability diagram for the time-independent cellular solutionUh(x). Left: stability against perturbations at spatial frequencyQ
Þk1 (k050.93). One eigenvalue crosses the imaginary axis on the linea1(Q;k0). The line has been calculated numerically using sev
modes (a23 ,...,a3). Right: stability against perturbations atQ5k1 ~k050.98,k150.03!.
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modes and the perturbations are coupled to all these mo
We show in Appendix A that the general form of a pertu
bation is

v~x,t !5elteiQx(
n

ivneink0x, ~3.3!

whereQP@0,k0). As before, due to the exponential decay
high-frequency modes, one can show~see Appendix A! that
finite-dimensional approximations are sufficient for a prop
stability analysis. The results are presented in Fig. 3. Sta
ity can be discussed with respect to several parameters
the most important ones areQ anda. We conclude that~i!
the system is stable against perturbations in the ra
uQu,12k0 and ~ii ! the neutral curve@denoted below by
a1(Q;k0)] has an extremal valueaext and the system is
stable against any perturbation fora.aext(k0). The system
becomes unstable again above a second bra
a.a2(Q;k0) @see Eq.~A8!#.

WhenQ5k1 we add the contribution ofL(Q)5b to the
stability matrix. Numerical calculations show that the eige
values are in the negative half plane, whena.a1(k1 ,k0)
andb,b0(a;k1 ,k0), as can be seen in the example in F
3. We conclude that the fixed pointUh(x) is stable when
a.aext(k0) andb,b0(a;k1 ,k0).

B. The family of solutions of the first kind

The spectrum of the eigenvalues of the trivial soluti
U(x)50 is equal toL(k) @Eq. ~2.10!#. Whenb50, there is
one unstable eigenvalue:l5L(k0)5a. Therefore, the cellu-
lar solutionUh(x) bifurcates fromU(x)50 at a50. In ad-
dition to the unstable eigenmodeeik0x there is a band of
marginally stable eigenmodeseikx, kP(0,1). A k eigenmode
can be nonlinearly unstable ifks5k0 , wheres is an integer.
Then, a periodic solution can bifurcate fromU(x)50. In this
subsection we will see that the cellular solutionUh(x) is just
one member of a family of antisymmetric solutions of t
form

UI~x!5 (
n52`

`

ibn/mei ~n/s! k0x, b2 n/m52bn/m . ~3.4!
es.

f

r
il-
nd

e

h:

-

.

Every solution is characterized by a triplet of intege
(m,s,p), wherem5 b s/k0 c is the number of linearly non-
stable modes in the rangekP(0,1), s is the number of sub-
harmonics in the rangekP(0,k0), andp is the periodicity of
the solution defined as the number of zeros of its deriva
]xUI(x) in the interval@x,x1s (p/k0)#. The triplet of inte-
gers corresponding to the solutionUh(x) is m5s5p51.

As an example we will study the casem53. We start with
s53, i.e., 3/4,k0,1. The infinite set of equations is trun
cated beyond the first stable modeb4/3. The justification of
this truncation will be checked after the calculation of t
coefficients of the first four modes. The equations for t
four modes are

b1/3b2/31b3/3b2/31b3/3b4/350, ~3.5a!

1

2
b1/3

2 2b3/3b1/32b4/3b2/350, ~3.5b!

k0b1/3~b2/32b4/3!5ab3/3, ~3.5c!

4

3
k0~b1/3b3/31

1
2 b2/3

2 !5LS 4

3
k0Db4/3. ~3.5d!

An additional assumption that will be used to solve E
~3.5b! is that b4/3b2/3 is much smaller than the other tw
terms in that equation. A solution of the set of equations

b1/35AaF S 4

3
k0D 2

21G2S a

8k0
D 2

, ~3.6a!

b2/35
a

8k0
, ~3.6b!

b3/35
1

2
b1/3, b4/3523b2/3. ~3.6c!

It is easy to see that this solution exists for 3/4,k0,1 and
that the supplementary assumption holds wh

a!18uL( 4
3 k0)u. At these values ofa the amplitude of the

higher modes (n.4) is indeed negligible compared to th
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FIG. 4. Left:UI(x) at ~a50.21,k050.93! and (s5m53). Right: two stationary solutions~at the same values ofa andk0!: Uh(x) ~outer
line! and the period-3 solution~3.6! ~inner line!.
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four first modes. The full solution has been calculated
merically and it is seen in Fig. 4.

In general, whens/(m11),k0,s/m ~s andm are inte-
gers ands<m!, we look for a solution withs subharmonics.
In the examplem53, there are solutions whens53 and 1,
but there is no solution whens52.

Equation ~3.5! has yet anothers53 solution, which is
approximately

b1/35
2

3Aa3

k0
2

1

LS 4

3
k0D , b2/352

a

k0
,

b3/352b1/3, b4/352
2

3

a2

k0

1

LS 4

3
k0D . ~3.7!

This approximation holds fora!L( 4
3 k0). @WhenL( 4

3 k0)50
this solution coincides with them54, s53 solution and for

intermediate values ofL( 4
3 k0) there is an intermediate solu

tion that cannot be developed in powers ofa.# The main
difference between that solution and the previous one~3.6! is
the periodicity p. The basic spatial frequency of solutio
-~3.6! is k0 and the periodicity isp53 ~see Fig. 4!, while the
principal spatial frequency of the new solution is2

3 k0 , so its
periodicity isp52.

The m53 solution ~3.6! has a special symmetry in th
limit a→0: It is symmetric around theU axis (U850). In
other words,U(x) is an eigenfunction of the antisymmetr
translation operatorR2@ # with an eigenvaluel51, where
Rn@ # is defined by

Rn@U~x!#52US x1
2p

k0

s

nD . ~3.8!

Before we give a general description of the familyUI(x),
we will briefly present a second example:s5m55. ~The full
calculation of this example is given in Appendix B.! Four
different solutions of this example are seen in Fig. 5. T
solutions are eigenfunctions ofR2@ #. Two additional solu-
tions U(x) and Ū(x) can be paired such tha
R2@U(x)#5Ū(x). The periodicity of all these solutions i
equal top55. In addition, there are otherm55 solutions
with lower periodicity,p54 andp53 @see Eq.~B2b!#. It is
very important for our understanding of the set of station
solutions to observe that after appropriate scaling, the f
FIG. 5. Four solutions at (a50.0001,k050.93! and (s5m55). Upper:UI(x). Lower: the graphs at the (U,U8) plane. The two leftmost
figures are the solutions~B1!; the two rightmost figures are the solutions~B7!.
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FIG. 6. Time-independent numerical solution of model equation.a51.2, b50.03, kmin50.053, k152kmin , and k0517kmin . Left:
numerical solutionU(x). Right: curve ofU(x) vs 2]xU(x).
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solutions of Fig. 5 look very similar and, in particular, the
‘‘start’’ with essentially the same derivative at the beginni
of the period.

C. The symbolic language and the topological entropy

The discussion of the qualitative nature of the solution
facilitated by the introduction of a symbolic language with
one-to-one correspondence between words in the lang
and solutions of the first kind. Since we deal with infinite
many degrees of freedom, the existence of such a langua
not obvious. Its usefulness in classifying the solutions a
ordering them in logical way is immense. In particular, t
symbolic language will allow us to demonstrate the existe
of a positive topological entropy of this family of solution

Looking at the graphs in the (U,U8) plane ~Figs. 4 and
5!, we see that the orbits move periodically from the left h
plane (U,0) to the right half plane (U.0). We denote by
the symbolsLn (Rn) a curved line segment in the left~right!
half plane that crosses theU850 line 2n11 times. This
means that there aren little loops before the orbit returns t
the valueU50. Any stationary solution of the first type ca
be written as an expression in this language. The expres
for the Uh(x) solution is (L0R0) j , where the integerj just
counts the periodic repetitions~Fig. 2!. In the usual way, we
are interested in ‘‘prime periods’’ and hence only writeL0R0
in this case. The expression for the antisymmetric solut
with m53 of Fig. 4 isL1R1 . Similarly, the orbits of Fig. 5
are coded byL2R2 , L0R1L0R0L1R0 , L0R0L1R1L0R0 , and
L1R0L0R0L0R1 . Because of translation invariance, the or
described byR1L1 coincides with the one described byL1R1
~and similarly for any cyclic permutation of any code!.

Our assertion is that, for sufficiently smalla.0, any ex-
pression of the formP iLni

Rn
i8

is realized as a stationar

solution of the first kind. The periodicity of such a solution

p5(
i

~ni1ni811!. ~3.9!

Clearly, for such a solution to exist,p must be smaller than
or equal tom, the number of unstable modes. In Fig. 6 w
show an example withp5m517 and with the code
R0L0R3L0R0L1R0L0R0L0R0L0R1L0R1L3R0L0 .
s

ge

is
d

e

f

on

n

t

Given the above rules, it is easy to construct the dict
nary of all possible expressions with given periodicity. F
example, the reader can verify that there are exactly f
solutions withp55, when m55, namely, those shown in
Figs. 2 and 4.

Having completed the examples, we turn to the evaluat
of the number of available antisymmetric solutions of pe
odicity p. We will show that this number grows expone
tially with p, in a scaling limit wherea gets smaller as the
required periods get larger. The exponent of this law
growth can be interpreted as the topological entropy t
characterizes the spatial complexity of stationary solutio
These solutions form the backbone on which our understa
ing of spatiotemporal chaos is based.

We end this subsection by counting the number of so
tions accommodated by the symbolic language. In the n
subsection we will argue that they all exist ifa is sufficiently
small.

The number of antisymmetric expressions of periodicityp
is equal to the total number of expressions of periodicityp/2:

Np5(
l 50

bp/3c

(
i 1 ,...,i l51 S p22(

j 51

l

i j

l
D 1

P̄i 1 ,...,i l

, ~3.10!

where P̄i 1 ,...,i l
is the normalized permutation numbe

P̄i 1 ,...,i l
5Pi 1 ,...,i l

/ l ! and Pi 1 ,...,i l
is the number of identica

permutations of the set$ i 1 ,...,i l%.
The maximum values of thei j is determined by the con

dition 2( i j<p2 l . Np is bounded from above by the numb
of binary numbers ofp digits and it is bounded from below
by the number of binary numbers ofp/2 digits. Therefore,
Np increases as 2zpp, where 1/2,zp,1. Computation of the
first elements ofNp shows that

Np.0.464320.687p. ~3.11!

In fact, it will be shown below that this family of solution
undergoes a rich multiplicity of cascades of bifurcations t
give rise to a much larger number of solutions. The implic
tion with regard to topological entropy will be discusse
there.



f-

e
a

lik
de

t

de

d
e

d
h

r

e

r
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D. Demonstration of the existence ofNp solutions
of the first kind

We will examine, for smalla, the general solutionUI(x),
characterized bym ands @see Eq.~3.4!#. We will argue that,
generically, in a system of sizeL52pm there existNp @see
Eq. ~3.11!# stationary solutions of periodicityp5m.

As explained in Sec. III A, for analytic purposes it is su
ficient to consider explicitly only the modes whosek lies in
the interval@0,2#. We will argue that the amplitudes of th
modes in this group do not scale uniformly with the bifurc
tion parameters. Defining a small parametere;Aa we will
split the modes into one group whose amplitude scales
en and other groups whose amplitude is smaller, of or
higher thann. The appropriate value ofn will be determined
later. To ordere2n we work with the ansatz

bn/m.H encn , 0,n<m

en11dn , 0,n<m, cn50

e2ndn , m,n<2m.

~3.12!

When this ansatz is substituted in the model~2.2! and~2.10!
one finds that the lowest-order equations depend only on
nonlinear operator. Therefore, these arem homogeneous
equations of ordere2n and they can be written asm quadratic
forms

cMlc50, l 51,...,m, ~3.13!

wherec is anm component vector (c)n5cn and theM l are
m3m matrices

Mi j
l 5

1

2
~d i 1 j ,l2d i 2 j ,l2d2 i 1 j ,l ! ~ i , j ,l 51,...,m!.

~3.14!

The set of equations~3.13! can be written as a singlem
component vector equation

f~c!50, ~3.15!

wheref l(c)[cMlc.
In order to discuss the solutions of this equation, we

fine them as the limit, asm→1, of a family of solutions of a
parametrized set of equations: We defineM l(m) such that
M l(1)5M l :

Mi j
l ~m!5Mi j

l 1
1

2
~m21!~d~m2 i !1~m2 j !,l !

~ i , j ,m2 i ,m2 j ,l 51,...,m! ~3.16!

and the correspondingm quadratic forms

f l~c;m!5cMl~m!c. ~3.17!

Clearly, Eq.~3.13! is now writtenf(c;1)50. The use of this
parametrization is that form50, the solutions can be foun
explicitly. Indeed, theM l(1) matrices are the Fourier spac
representation of thenonaliased squaring operator on a gri
restricted to the subspace of antisymmetric functions. T
normalsquaring operator on a grid U2(xj ), restricted to the
same subspace, is represented in Fourier space by theM l(0)
-

e
r

he

-

e

matrices. In other words, thel th mode of the discrete Fourie
transform of U2(xj ) is equal tocMl(0)c, where c is the
discrete Fourier transform ofU(xj ). Accordingly, the vector
equationf(c;0)50 can be written in real space as

]x@U2~xj !#50, xj5S j 1
1

2D p

k0

s

m

U~xj 1m!52U~xj !, 2`, j ,`, ~3.18!

where the operator]x is defined in Fourier space by

]x@U2~xj !#5E dk ik(
h

eik~xj 2xh!U2~xh!. ~3.19!

Equation~3.18! has 2m solutions, which can be written as

U~xj !5A@2y~xj !21#, ~3.20!

where y(xj ) is a binary digit,y(xj )P$0,1%, and A is an
arbitrary amplitude. So a solution of Eq.~3.18! is represented
by a string y of binary digits such that (y) j5y(xj ). The
simplest example ism51. ThenM1(0)50 and the only non-
trivial antisymmetric solution isy501. This is theUh(x)
solution.

In Appendix C we show that if there is a solution to th
m21 equationsf l(c;m)50, l ,m, at any m, and cmÞ0,
then we are guaranteed that this solution solves them equa-
tions f(c;m)50 at m50 and 1.~Notice thatcm50 means
that the periodicityp is smaller thanm.! Accordingly, we
define the setP~m! as the set of solutions of them21 equa-
tionsf l(c;m)50, l ,m. We already saw that atm50, P~m!
has 2m solutions.

As m is varied, the points of the setP~m! can be annihi-
lated in pairs~see Appendix C!. We want to know how many
points survive whenm→1. In Fig. 7 we show an example fo
m54. The eight solutions of the three equationsf l(c;m)50,
l 51,...,3, are

c55
1,2: ~0,0,0,1!,~0,1,0,0!

3,4: ~17V,0,1,0!

5,6: S 2V21,6A2
V11

V
,1,6A2V~V11! D

7,8: S V21,7A2
V21

V
,1,6A2V~V21! D ,

~3.21!

FIG. 7. Left: schematic bifurcation diagram of the setP~m! at
m54. Right: solution~7! at m50 ~upper! and m51 ~lower!. The
crosses denote the discrete solution~3.20!: y5(0,1,0,0,1,1,0,1).
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whereV[A22m. Solutions 2 and 4 fail to satisfy themth
equationfm(c;m)50 since cm50. Solutions 3, 7, and 8
change their real-space shape asm increases from zero, a
can be seen in Fig. 7, and they coincide atm51. So only
four different solutions survive atm51, namely, those with
the codes

a: ~L0R0!4, b: R1L0R0L1 ,

c: L0R1L1R0 , d: ~L0R0!3. ~3.22!

Expressionsa–c are the only possible ones with periodici
p5m54. The periodicity of solutiond is p53.

Since we lack an analytical description of the bifurcati
scheme of the setP~m! for an arbitrarym, we will present
instead a bifurcation scheme based on numerical experim
of examples up tom530. At m50 we assign to every so
lution c an expression of the formP iLni

Rn
i8
, which charac-

terizes its real-space discrete Fourier transformU(xj ). To
each sequence of zeros and ones, as defined by Eq.~3.20!,

02n11112n1811
¯02nl1112nl811, we associate the produc

above. Note that theni andni8 are nonnegative half integer
here.

As m→1, the numerics show that only the solutions w
integerni ,ni8 survive. Indeed, we observe that those fact
with half integern are modified asm is changed and reac
finally the integer part ofn, asm→1. Accordingly, the pe-
riodicity p of these solutions is lowered atm51, as illus-
trated by solution 7 of the example above. Those soluti
that do not contain any half integerni conserve their expres
sion whenm is increased. Their periodicity is conserved, a
since p5m, cm is nonzero so these solutions solve E
~3.15!. The numerical experiments indicate that they all ex
at m51.

If we know that a solution to Eq.~3.13! exists, we can
find it using analytical or numerical methods. Two mo
steps should be taken in order to fixe, the amplitude of the
solution. First, we write all theO(e2n) equations for the
modesdn where m,n<2m. These equations are triviall
solved by

dn5
1

Ln
(
j 51

m

cjcn2 j , m,n<2m, ~3.23!

whereLn5L@n(k0 /s)#/@n(k0 /s)#. The next step is to find
the amplitudesdn wheren<m. The cn dictate the symme-
tries of a solution. A simple calculation shows that when
solution is an eigenfunction of an operatorRn @see Eq.~3.8!#

there areG5 bm/n1 1
2 c such dn ~i.e., modes wherecn50!

andG equations of ordere2n11,

(
j 51

n21

cjdn2 j2 (
j 5n11

m

cjdj 2n2(
j 51

m

cjdn1 j50.

~3.24a!

There is yet another equation of ordere2n11 for thecs mode:

e2n11S (
j 51

s21

cjds2 j2 (
j 5s11

m

cjdj 2s2(
j 51

m

cjds1 j D 5
a

k0
bs .

~3.24b!
nts

s

s

.
t

a

Equation~3.24b! determines the value ofn according to the
value ofcs :

n5H 1, csÞ0

2, cs50.
~3.25!

For example, in them53 case that we studied before, the
was onen51 solution @Eq. ~3.6!# and onen52 solution
@Eq. ~3.7!#. WhencsÞ0, we substitute the solutions~3.23! in
Eqs.~3.24! and then they can be written in a matrix form

Ad5a, ~3.26!

whereA is a (G11)3(G11) matrix ~cn and Ln!, d is the
vector of the (G11) unknownsd5e2(dn1

,...,dnG
,1), anda

is a given vector equal to@0,...,0,0,(a/k0)cs#. The solution
vectord5A21a completes the calculation of the 2m coeffi-
cientsb1/m ,...,b2 . Whencs50, there is no generic solution
unlessG5m21. In that case Eq.~3.24b! can be written in a
matrix form

A~cs ,a!d50, ~3.27!

where A(cs ,a) is a G3G matrix andd is a vector ofG
unknowns:d5e2(dn1

,...,dnG
). The eigenvalue ofA deter-

minescs(a) and the eigenvector determinesd, up to its am-
plitude. TheO(e6) quadratic equation for the nonzerocn
mode determines the amplitude ofd and completes the com
putation.

In summary, in the present subsection we studied theUI
family of solutions in the limit of smalla. We saw that the
properties of these solutions are determined by the nonlin
operator alone and therefore the generic solutions scale
Aa. @The nongeneric cases are those solutions wherecs50
(s5k0L/2p).# The spectrum of these solutions fills th
range ofk modes from zero to one. We found that, gene
cally, in a system of sizeL52pm there areNp52zpm sta-
tionary solutions of periodicityp5m. So the entropy per
unit length of this system is positive.

E. Bifurcations of solutions of the first kind

In this section we study the periodn-tupling bifurcations
of the solutions of the first kind. We examine in detail th
bifurcations of the cellular solutionUh(x) @Eq. ~3.1!# and its
transition to spatial chaos. Then we will argue that all t
solutions of the first kind go through a multiplicity of cas
cades of period-n-tupling bifurcations.

1. Spatial period-doubling bifurcations
of the cellular solution Uh„x…

In the beginning of this section we saw that the stabil
of the harmonic solutionUh(x) changes at the critical line
a1(Q;k0), as the largest eigenvalue of the stability mat
crosses the imaginary axis. When this happens a bifurca
occurs and a new branch of solutions can emerge from
bifurcation point. Due to the quadratic nonlinearity, the p
turbed harmonic solutionUh(x)1elt(n(vnei (Q1nk0)x1c.c.)

can saturate ifQ5 1
2 k0 . In the current subsection, the ant

symmetric period-2 solution



b

n
q

ul
of

r

f

fo

t-
s

t

o

t
-

t
lue
n

s

dd
e

nd
iod-

e

rve

ior

-

its
ow

e to
in

a

ith

4114 57GOREN, ECKMANN, AND PROCACCIA
Uh
~2!~x!5 (

n52`

`

ibn/2e
i ~n/2!k0x, b2n/252bn/2 ,

~3.28!

will be investigated. The equations of the integer modes~n
even!,

(
l 52`

`

bl 11/2bn21/22 l1 (
l 52`

`

blbn2 l5
2

k0
L~nk0!bn ,

~3.29a!

together with the equations of the half integer modes~n odd!,

(
l 52`

`

bl 11/2bn2 l5
1

k0
L@~n11/2!k0#bn11/2, ~3.29b!

suggest that above the bifurcation point the solution can
approximated by

bn/2.H an/21e2cn/2 , n even

ecn/2, n odd,
~3.30!

where theam are the coefficients of the harmonic solutio
~3.1! and e is a small parameter. When we substitute E
~3.30! into Eqs.~3.29! and expand them ine, we find equa-
tions for any order. The order-one equations are trivially f
filled by the am . The half-integer mode equations are
ordere and they are identical to Eq.~A3! with l50, where
thev (n21)/2 are replaced bycn/2 . Hence the period-2 solution
Uh

(2)(x) bifurcates from the harmonic solutionUh(x) at
ac

(2)5a1(k0/2;k0)5aext(k0). The second-order equation fo
the b1 mode reads

~A1B!e25
a1

k0
~a2aext!, ~3.31!

where

A5
1

2 (
n52`

`

cn11/2c1/22n , B5 (
n52`

`

cna12n2c1

aext

k0
.

~3.32!

From Eqs.~3.30! and ~3.31! we find the scaling behavior o
the bn/2 :

bn/2~a!5H bn/2~ac!1~a2aext!ĉn/2 , n even

~a2aext!
0.5ĉn/2 , n odd.

~3.33!

The numerical solution of the set of nonlinear equations
the first 13 modes (b26/2, . . . ,b6/2) confirms this result. A
translation ofUh

(2)(x) by 2p/k0 gives a second antisymme
ric period-doubling solution with coefficient
b̃n/25(21)nbn/2 .

The stability of the period-2 solutionUh
(2)(x) can be

tested by the method that has been used to calculate
stability of the solutionUh . We show in appendix A that the
global stability picture ofUh

(2) is similar to that ofUh . In the
(a,Q) parameter space there is a neutral curvea1

(2)(Q;k0),
where the upper eigenvalue crosses the imaginary axis. H
e

.

-

r

he

w-

ever, in contrast toUh ~Fig. 3!, the unstable region isabove

the neutral curve and thereforeUh
(2) is unstable at any value

of a.
a1

(2)(Q;k0), like a1(Q;k0), has an extremum a
aext

(2)5a1
(2)(k0/4;k0). At that point, a secondary period-dou

bling bifurcation to a new solution Uh
(22)(x)

5(nibn/4e
i (n/4)k0x takes place. We show in Appendix A tha

beyond the bifurcation point there is one positive eigenva
and thesecondeigenvalue will cross the imaginary axis o

the neutral curvea1
(22)(Q;k0).

The scaling of the coefficientbn/4 beyond the bifurcation
point is similar to the first period-doubling bifurcation. It i
easy to see that similarly toUh

(2)(x), the coefficients of

Uh
(22)(x) scale with two different scaling exponents: the o

modes scale like (a2ac)
0.5 and the even modes scale lik

a2ac .
This period-doubling process repeats itself again a

again and we have an infinite cascade of spatial per

doubling bifurcations at the pointsaext
(2n)5a1

(2n)(k0/2n;k0).
Above any bifurcation point the stability matrix has positiv

eigenvalues and hence the solutionsUh
(2n) are unstable, but

one eigenvalue changes its sign on the neutral cu

a1
(2n11)(Q;k0). The series of bifurcation pointsaext

(2n) con-

verges geometrically toaext
(2`) :

aext
~2`!2aext

~2n!;d2
2n . ~3.34!

We followed the first five bifurcations~at k050.93, using
241 modes! and found the scaling to be

d2[ lim
n→`

aext
~2n21!2aext

~2n!

aext
~2n!2aext

~2n11!
51061. ~3.35!

A system of infinite extent shows spatial chaotic behav

beyond the accumulation point. Just aboveaext
(2`) , U(x) ap-

pears as a noisy 2n periodic function, i.e., the spatial spec
trum becomes continuous around the apices of thenth level.
When a is further increased the spatial spectrum loses
organized structure. Although a finite system cannot sh
spatial chaos, still we can say that it is disordered or clos
a chaotic solution if it goes to a spatially chaotic solution
the limit kmin→0.

2. Spatial period-n-tupling bifurcations
of the cellular solution Uh„x…

The period-doubling bifurcation is only one example of
wider family of n-tupling bifurcations@12#. A perturbation
with a rational normalized wave numberQ/k05r /s, wherer
ands are integers, can be nonlinearly saturated together w
the s21 other modes

Q5
n

s
k0 , n51, . . . ,s21, ~3.36!

to one period-s solution
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Uh
~s!~x!5 (

n52`

`

ibn/se
i ~n/s!k0x, b2n/s52bn/s .

~3.37!

The simplest example iss53. We show in Fig. 8
the graph of a period-3 solutionUh

(3)(x) in the (U,U8)
plane. Note the small modulations around the perio
solution Uh(x). The solution found here should not b
confused with the other period-3 solutionUI(x). If we com-
pare the graphs of the two solutions in the (U,U8) plane
~Figs. 4 and 8!, we see that the two solutions are of a diffe
ent nature.

The period-3 solution bifurcates fromUh(x) on the neu-
tral curvea1(Q;k0) at the point

Q5k0/3,

ac
~3!5a1~k0/3;k0!.

We saw in Sec. III A thata1(Q/3;k0)50 whenQ,(12k0)
and thereforeUh

(3)(x) exists only ifk0.s/(s11)53/4. Nu-
merical study ofUh

(3)(x) shows that it exists atk0.0.769.
The equations of noninteger modes, for example,

2 (
n52`

`

bn11/3bl 2n1 (
l 52`

`

bn12/3bl 21/32n

5
2

k0
L@~ l 11/3!k0#bl 11/3, ~3.38!

together with the equations of the integer modes, suggest
near the bifurcation point the solution scales like

FIG. 8. Two stationary solutions at~a50.21, k050.93!:
Uh

(3)(x) ~solid line! andUh(x) ~dotted line!.
1

at

bn/3.H an/31ecn/3, ~n mod 3!50

ecn/3 otherwise,
~3.39!

where thean are the coefficients ofUh(x) and e is a small
parameter. Notice that this scaling is different from the sc
ing near the period-doubling bifurcation@Eq. ~3.30!#. The
equation for theb1 mode reads

Ae21Be5
a1

k0
~a2ac

~3!!, ~3.40!

where similarly to Eq.~3.32!

A5 (
n52`

`

cn11/3c2/32n , B5 (
n52`

`

anc12n2c1

ac
~3!

k0
.

~3.41!

Accordingly, the bifurcation istranscritical:

bn/3~a!5bn/3~a0!6 ĉn/3~a2a0!0.5, ~3.42!

where

a05ac2
1

4

k0

a1

B2

A . ~3.43!

In Appendix A we show that the solutionUh
(3)(x) has

zero eigenvalues atac anda0 , as in transcritical bifurcations
of low-dimensional dynamical systems~ordinary differential
equations!. However, unlike low-dimensional dynamical sy
tems,Uh

(3)(x) is unstable at any value of the control param
etera.

A richer behavior is found whens.3. The neutral curve
a1(Q;k0) is nonzero in the band 12k0,Q,2k021 ~see
Fig. 3! and therefore periodic solutions can bifurcate for a
s,k0 /(12k0). A real perturbation contains two bas
modesQ andk02Q ~and all their harmonics!. Accordingly,
bs/2c different perturbations build one period-s function
~3.37! and they can be combined in several ways to bu
different period-s solutions. For anys there arebs/2c differ-
ent bifurcation points on the neutral curve:

ac
~s;r !5a1S r

s
k0 ;k0D , r 51,...,bs/2c. ~3.44!

As an example we will briefly examine the cases55 where
there arebs/2c52 bifurcations on the neutral curve. Nea
ac

(5;r ) the leading order of the marginal mode ise, while the
other mode scales likee2:
bn/5.H an/51e2dn/5 , n mod 550

ecn/5d r ,r1e2dn/5 , n mod 55r,52r ~r51,2;r 51,2!.
~3.45!
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Accordingly, the bifurcation equation reads

(
m52

4

Am
~5;r !em5

a1

k0
~a2ac

~5;r !!, ~3.46!

where the factorsAm are defined similarly to Eq.~3.41!. The
number of turning points on the bifurcation curvee (5;r )(a)
could be one or three, depending on the signs of the fac
We found numerically, atk050.93, thate (5;1) has three turn-
ing points, while e (5;2)(a) has only a minimum point a
a5ac

(5;1) ~saddle-node bifurcation!. Notice that translation
of any of the period-5 solutions by 5p/k0 gives another an-
tisymmetric solution with coefficientsb̃n/55(21)nbn/5 .

We saw that in addition to the period-doubling bifurcati
there is a finite set of possible bifurcations on the neu
curve a1(Q,k0) at any periodicity s such that
s5Q/k052,3,...,b k0 /(12k0) c. The bifurcation curve has
one to bs/2c turning points. The period-s solutionsUh

(s)(x)
are small modulations aroundUh(x), as can be seen in th
example in Fig. 8. Any of the solutionsUh

(s)(x) has its own
neutral curve where one eigenvalue crosses the imagi
axis ~notice that the highest eigenvalue is always positi
i.e., these solutions are unstable!. On that line a secondar
bifurcation, with a differents, can take place, yielding in
ductively a hierarchical structure of bifurcations@12#. Ac-
cordingly, we can find infinitely many different routes
spatial chaos through an infinite series of bifurcatio
S5(s1s2 ...), whereS52` is the period-doubling route.

Finally, we note that in addition to the neutral line bifu
cations, whens>5 there are others periodic solutions, close
to Uh(x), that arise at finitea. Accordingly, these solutions
are finite at the bifurcation point. For example, whens55
there is one solution, with two branches, that bifurcates
ac

(5;1),a,ac
(5;2) . At higher values ofs there are more such

solutions. A similar family of stationary period-n solutions
has been found numerically for the Kuramoto-Sivashins
equation@13#.

F. Summary

The upshot of this section is that the family of stationa
solutions of the first kind is very rich indeed even in o
simplified model. We showed that we can propose a sy
bolic language that describes the organization and coun
of the basic periodic solutions in this family. On top of the
basic solutions there is a complex array ofn-tupling bifurca-
tions that results in an even richer spatial complexity in
topological sense. Although we considered in detail the
furcation scheme of the cellular solutionUh(x) only, it can
be shown that all other members of theUI family that can be
written as (P iLni

Rn
i8
)`, go through similar bifurcations asa

is raised, until they become spatially chaotic.
Notice that beyond any bifurcation point the new perio

n solutions coexist with the old ones. Solutions do not d
appear, but they usually exchange their stability with the n
period-n solutions. Accordingly, the spatial topological e
tropy that we estimated before is just a lower bound to
rate of increase of allowed solutions. This explains in p
the unmanageable complexity of stationary solutions av
able for the case of the Kuramoto-Sivashinsky equation.
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IV. A FAMILY OF SOLUTIONS OF THE SECOND KIND

In this section we turn to the discussion of a second fa
ily of solutions that are qualitatively different from thos
labeled as ‘‘First Kind.’’ The main characteristic of solution
of the second kind is that they display a scale that is of
order of the size of the system. In that scale these solut
are related to typical phenomena that occur in experime
systems. It has been often observed in the transition to ch
in experimental systems that there exists amean flow~or
drift flow!, which is a flow whose length scale is large com
pared to the wavelength of the cellular state~e.g., convection
rolls! @14–17#. Numerical experiments of the model~2.2!
and ~2.10! exhibit stationary and time-dependent solutio
whose typical length scale is of the order of the system s
Using the control parameterb we can control the time de
pendence of this solution. Whenb is larger than a critical
value bc , the large-scale solutions are stable. Whenb is
lowered, these solutions pass through a series of Hopf bi
cations. The first transition is to a temporally periodic so
tion and then the solutions become quasiperiodic and fin
temporally chaotic. This family of solutions is denote
UII (x,t).

In Sec. III we saw that when aUI solution is substituted
into the model equation, the lowest-order terms are de
mined by the nonlinear operator alone. This implies that
amplitude of the solution is proportional to the square root
the control parameter. In addition, the set of solutions
invariant, in the lowest order, under inversionUI(x)
→2UI(x). In contrast, we will see that for theUII family
the linear and nonlinear terms are of the same order
therefore the solutions are proportional to the control para
eter and are not invariant under inversion.

A. Stationary solutions

Our discussion is based on the observation that we
find an exact stationary long-wavelength solution to t
model equation~2.2! when the linear operator has only on
unstable mode and no stable modes, i.e., ifL(k) is of the
form

L~k!5bd~ uku2k1!, b.0. ~4.1!

Indeed, we shall check that the time-independent functionUc
is a solution of Eq.~2.2! with L as in Eq.~4.1!:

Uc~x!5A
b

k1
sinS k1

2
xD w S k1

2
xD , ~4.2!

wherew~u! is the Walsh cal@1,(u2p/2# function

w~u![H 1 if
p

2
<u,

3p

2

21 otherwise.

~4.3!

Substitution into Eq.~2.3! gives

N@Uc~x!#5S Ab

2k1
D 2

k1 sin~k1x!. ~4.4!

The Fourier transform ofUc(x) is
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FIG. 9. Time-independent solution of the model~2.2! and~2.10!. b50.2,k150.06,k050.93, anda51.2. Left: comparison of numerica
and analytical spectrumuUc(k)u at k,1. Right: real-space numerical solutionUc(x). Inset: curve ofUc(x) vs 2]xUc(x). The large
‘‘excursion’’ is due to the sharp jumps, while the flat connection is due to the monotonically decreasing part of the solution. The re
compare it to they(22) orbit in Ref. @20#.
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Uc~x!5
b

k1
(
n51

`

2un sin~nk1x!, ~4.5a!

un[
A

p
~21!nS 1

2n21
1

1

2n11D . ~4.5b!

If we choose the amplitude ofUc(x) as

A5pa, a5
32

3p2 .1.08, ~4.6!

then, indeed,Uc solves Eq.~2.2! with the linear operator
~4.1!. In Fig. 9 we compare the solutionUc(x) and the nu-
merical solution of the model equation with the full line
operator~2.10!. It is manifest that they are very close, a
this is the basis of the following discussion.

Whenk0 is sufficiently incommensurate withk1 , the lin-
ear operator~2.10! deviates from Eq.~4.1! only at k.1, so
Uc(x) is close to the exact time-independent solution of
~2.10! at k,1, as we can see in the figure. Whenk0 /k1 is an
integer there are small deviations fromUc(x) at k;k0 . In
the remainder of this section we will use the solutionUc(x)
as an approximation to the exact solution of the model~2.2!
and ~2.10!.

The ansatz forUc(x) @Eq. ~4.2!# contains sharp disconti

nuities atx05 (1/k1)(n1 1
2 )p. Accordingly, its spectrum de

cays like 1/k2. Of course, due to the dissipative modes in
linear operator, high spatial modes will be exponentia
damped@18# and the discontinuities will broaden. We deno
the width of the ‘‘discontinuities’’ byl 0 . Since uUc(k)u2

starts to decay like 1/k2 at spatial modes smaller tha
k;1/l 0.1 and exponentially above it,l 0 is a ‘‘Kolmogorov
scale.’’ Hence a better approximation forUc(x) near the
discontinuities is

Uc~x!5
2

p
SiS x2x0

l 0
D , ux2x0u!

p

2

1

k1
, ~4.7!

where Si(z) is the sine integral function
Si(z)5*0

z@sin(t)/t#dt2p/2. The limit l 0→0 is the jump limit,
while for finite l 0 it decays like 1/k2 for spatial modes
.

e
y

smaller than 1/l 0 and is zero for higher modes. Similar o
cillatory shock solutions have been found in numerical st
ies of the Kuramoto-Sivashinsky equation with homog
neous Neumann boundary conditions@19,20#.

Define the fieldh(x,t)[ 1
2 *0

xdy U(y,t). By integrating
the solution~4.2! one obtains

h~x!}UcosS k1

2
xD U. ~4.8!

Notice that other Galilean invariant equations such as Bu
er’s equation and Sivashinsky’s equation have similar s
tions @21#:

h~x!} ln@ ucos~x!u#, ~Burger’s equation!,

h~x!} ln@ ua2cos~x!u# ~Sivashinsky’s equation!.
~4.9!

For a given set of parameters (a,b,k0 . . . ) one can find a
second long-wavelength stationary solution. We will sh
that a solution with very complex spatial spectrum~see the
inset in Fig. 10! can be analyzed analytically when on
chooses the appropriate variables to describe it. We look
a solution of the form

Ud~x!5
b

k1
sinS k1

2
xDwS k1

2
x;q D z~x!, ~4.10!

wherew(u;q) is the symmetric rectangular wave

w~u;q!5H 1 if
p

2
2q<u,

3p

2
1q

21 otherwise

~4.11!

andz(x) is an unknown function ofx. The Fourier compo-
nent of the nonlinear termN@Ud(x,t)# at spatial frequencyk
is
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FIG. 10. Time-independent solution of the model~2.2! and ~2.10!. b50.005,a50, andk150.09. Left: spectrum ofz2(k) ~A52.03,
B518.2, andC516.1!. Inset: spectrum ofuUd(k)u. Right: real-space numerical solution:Ud(x).
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2k1
D 2

@2z2~k!2z2~k1k1!2z2~k2k1!#, ~4.12!

wherez2(k) stands for thek component ofz2. We substitute
an ansatz forz2(k):

z2~k!5A21B~12Cuku!S (
n52nmax

nmax

d~k2k1n!D
~4.13!

and then Eq.~4.12! is equal to

k1S b

2k1
D 2

A2d~ uku2k1!1R, ~4.14!

where R5c1d(uku2k1nmax)1c2d„uku2k1(nmax11)…. When
a50, Eq. ~4.14! is an exact solution for
k/k1<nmax5b(11k1)/k1c. We see in Fig. 10 a comparison o
the ansatz~4.13! with the numerical solution@the coefficients
A, B, andC were found by fitting the ansatz~4.13! to the
numerical solution#. When aÞ0 there are deviations from
Eq. ~4.13!: ~i! There must be a discontinuity in the slope
z2(k) at k5k0 so (N@Ud#)(k0)Þ0 and~ii ! qÞ0 and hence
thekÞnk1 components are not zero but constant. A detai
discussion will be given elsewhere@22#.

B. Stability of the stationary solution

As in the case of the solutions of the first kind, we exa
ine now the stability of the stationary solution under sm
perturbations. Numerical integration of the model~2.2! and
~2.10! shows that its stationary solution is stable inside t
subspace of antisymmetric functions, whenb is larger than a
critical valuebc . Although Uc(x) deviates from the exac
solution of the model equation, we can expand the oper
L1N around it. This means that we may find several u
stable directions towards the exact solution. Numerical co
putation of the stability matrix ofUc(x) does show one such
direction. However, this should not affect the qualitative u
derstanding of the other eigenvalues, which lead to the
bilization mechanism.

In Appendix A we studied the stability of the shor
wavelength solutionUh(x). Since the amplitudes of the
higher modes (k.2) of this solution decay exponentiall
d

-
l

e

or
-
-

-
a-

with k, we were able to truncate the stability matrix aft
three modes and yet have a good approximation of the c
plete stability matrix. For two reasons this is not the ca
with Uc(x). First, there areO(k1

21) modes that do not decay
exponentially and we want to check the stability ofUc(x) in
the limit k1→0. Therefore, there is an infrared divergence
the number of relevant modes. On the other hand, we do
know a priori how many modes in the short-wavelength r
gime are needed to stabilize the solution. Therefore, we s
with an infinitely large stability matrix and examine the d
pendence of the eigenvalues on the matrix size.

As in Sec. III A, we substitute in the model equation
solution of the formU(x,t)5Uc(x)1eltv(x), wherev(x)
is a small perturbation. The linear eigenvalue equation
v(x) is

lv5T@v#1Lu@v#1Ls@v#[S@v#, ~4.15!

where the operatorT is equal to

T@v#5]x@Uc~x!v~x!# ~4.16!

and the linear operatorL has been split into two parts
L5Lu1Ls, where Lu contains only unstable modes
Lu(k)50 for uku>1, andLs contains only stable modes.

SinceUc(x) is periodic with periodk1 @cf. Eq. ~4.5!#, the
eigenvectors ofT are characterized by a normalized spat
frequencyq5Q/k1 and they have the form

v~x!5 (
n52`

`

vnei ~n1q!k1x, qP@0,1!. ~4.17!

SinceL is diagonal, the eigenvectors ofS will have the same
form. This means that we can decomposes~S!, the spectrum
of S, such thats(S)5(qs„L(q)1T(q)…, where the opera-
torsL(q) andT(q) can be represented by the infinite matr
cesT(q) andL(q):

Ti j ~q!5b~ i 1q!ui 2 j ,

Li j ~q!5d i , jL„~ i 1q!k1…, ~4.18!

whereun is defined in Eq.~4.5b!.
In @22# we show that the real part of the spectrum

„TN(q)1Lu(q)…, whereTN(q) is the projection ofT(q) on a
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finite space of (2N11) Fourier modes (2Nk1 ,...,Nk1), has
positive eigenvalues, but they are bounded from above
c max@b,a (k1 /k0)#, wherec;O(1). On theother hand, the
spectrum ofLs(q) is real, negative, and unbounded fro
below. Then we show that for smallb

s„L~q!1T~q!….s„Lu~q!1TN~q!…1s„Ls~q!…,
~4.19!

whereN5 b1/k0c. Therefore, for smallb the long-wavelength
solution Uc(x) is unstable. Whenb is increased, the cou
pling to the stable modes ofLs(q) stabilize the unstable
modes of„Lu(q)1TN(q)… until b5bc :

bc

k1
5c maxS k1 ,

a

k0
D , ~4.20!

with c;O(1), when all the eigenvalues become negati
i.e., Uc(x) becomes stable, as can be seen in the examp
Fig. 11.

C. Time-periodic solution

In the preceding subsection we saw that whenb,bc the
stationary large-scale solution loses stability. In this subs

FIG. 11. Eigenvalues of the stability matrix.k151.0005/16,
q50, and a50. Abscissa: the control parameter. Ordina
Re$l/b%; the real part of the largest eigenvalues of the stabi
matrix S(q) is normalized byb.
y

,
in

c-

tion we describe a Hopf bifurcation of the stationary soluti
Uc(x). We will see how the long waves and short wav
interact to create a time-periodic solution. This Hopf bifu
cation is the first one in a series of bifurcations that lead t
temporal chaos whenb is decreased, cf. Sec. IV D.

The nonlinear model~2.2! and ~2.10! conserves antisym
metry, i.e., an antisymmetric fieldU(x,t0) stays antisymmet-
ric for any t.t0 . An antisymmetric periodic solution of fre
quencyv can be written in the general form

Up~x,t !5m0~x!1 (
n51

`

ieink0x@mn~x!einvt1mn* ~2x!e2 invt#

1c.c., ~4.21!

where an asterisk denotes complex conjugation and we
glected the off-diagonal terms in (v,k) space. We see tha
mn(x) are the coefficients ofleft-traveling wavesand
mn* (2x) are the coefficients ofright-traveling waves. m0 is
a stationary real function. These traveling-wave solutio
break the Galilean symmetry: There is no reference sys
in which Up(x,t) is at rest. In order to find a periodic solu
tion to the model equation we will have to make a few a
sumptions. Near the onset of a periodic solution@i.e., when
U(x) becomes time dependent as we decreaseb# we elimi-
nate all themn(x) exceptm0(x) andm1(x). We now substi-
tute Up(x,t) in the model equation and define

Lk0
@m1~x!#[e2 ik0xL@m1~x!eik0x#. ~4.22!

The following coupled ordinary differential equations for th
functionsm0(x) andm1(x) are found:

]x@
1
2 m0

2~x!1um1~x!u21um1~2x!u2#1L@m0~x!#50,
~4.23a!

]x~m0um1u!1 i ~k01]xf1!m0um1u1e2 if1Lk0
@m1#5 ivum1u,

~4.23b!

wheref1(x) is the argument ofm1(x).
The exact solution form1(x) is seen in Fig. 12. We find

an approximate solution of these equations in Appendix
We show that the onset of a periodic solution occurs at

:

FIG. 12. Periodic solution of the model~2.2! and~2.10!. a51.2,b50.0691,k050.9352Dk, andk150.06. Left: numerical solution of
the phasef1(x). Right: numerical solution of the amplitudeum1(x)u. Dotted line: analytical ansatz.
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FIG. 13. Poincare´ section at three values ofb: 0.052 572, 0.052, and 0.0516~left to right!. a51.2,k150.06, andk050.93. The abscissa
is U(k1), the amplitude of thek1 mode. The ordinate is the square root of the total ‘‘energy’’S5A(kU(k)2. The Poincare´ sections were
taken atU(k0)50.1.
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bc.0.0527a. ~4.24!

This result is in accordance with the stability matrix estim
tion bc.(k1 /k0) a @Eq. ~4.20!#. We also find the tempora
frequency of the solution

v5M0

k02k1

p22
. ~4.25!

In this section we analyzed the periodic solution that
furcates fromUc(x). A similar periodic solution bifurcates
from Ud(x), close to the bifurcation point ofUc(x). So both
periodic solutions coexist within the band of values of t
control parameters.

D. Three modes, quasiperiodicity, and temporal chaos

The periodic solutions that we found involve left- an
right-traveling waves and a stationary component. Near
onset of a periodic solution we could truncate the solution
three temporal modes:m1(x)ei (kx1vt), m1* (2x)ei (kx2vt),
andm0(x). As the control parameterb is decreased further
there exists a range of values for which one can still desc
the temporal behavior of the model~2.2! and~2.10! by three-
mode dynamics.

As an example for theb dependence consider the valu
k050.93, k150.06, anda51.2. Start with the stationary
solution Ud(x) @Eq. ~4.10!#. The first Hopf bifurcation oc-
curs atb50.0709 and the solution becomes periodic. Sta
ing at b50.052 98, we can see transient states with t
frequenciesv andv1 . The frequencies are irrational with
winding number close to 1/6. A secondary Hopf bifurcati
to a quasiperiodic solution occurs atb50.052 58. At that
point the winding number is close to 8/49 or@6,8# in contin-
ued fractions@23#. As we decreaseb, harmonies of the form
mv1nv1 , wherem andn are integers, begin to appear. Th
phase-space~U space! diagram shows aT2 torus attractor.
The projection of the Poincare´ section of this attractor is
shown in Fig. 13. The size of the Poincare´ section ~Hopf
radius! as a function of the distance from the bifurcatio
point is shown in Fig. 14.
-

-

e
o

e

t-
o

At the bifurcation point the stationary fieldsmn(x) of Eq.
~4.21! become time dependent:

mn~x!→mn~x!1hn~x!eiVt1h̃n~x!e2 iVt. ~4.26!

The linearized equation forh1(x) is identical to Eq.~4.23b!:

]x~m0uh1u!1 i ~k01]xfh1
!h0um1u1e2 ifh1Lk0

@h1#

5 iv1uh1u, ~4.27!

wherev1[v1V andfh1
(x) is the argument ofh1(x). We

write the solution in the form m0(x)5M0m̃0(x),
h1(x)5N1h̃1(x) where m̃0(x) and h̃1(x) are some func-
tions independent of the parameters~a,b!, so when the real
part of Eq.~4.27! is integrated from 0 toL we get

N11a1N1M050. ~4.28!

The equation form0(x) takes the form

FIG. 14. Measure of the size of a Poincare´ section~Hopf radius!
as a function of the distance from the bifurcation point.a51.2,
k150.06, andk050.93. The ordinate is the difference between t
maximum and the minimum of the square root of the total ene
S5A(kU(k)2 on the Poincare´ sectionU(k0)50.1. In the shaded
region the size of the Poincare´ section depends on the initial con
ditions. The slope of the straight line is 0.50 and the bifurcat
point is b050.052 581.
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]xS 1

2
m0

2~x!1(
i

@ umi~x!u21umi~2x!u2#1Uh1~x!U2

1Uh1~2x!U2D 1L@m0~x!#50. ~4.29!

After projecting Eq.~4.29! on eik1x the effective equation
near the bifurcation point becomes

~b2b0!M01b1N1
250. ~4.30!

From Eqs.~4.28! and ~4.30! we find that the bifurcation of
the quasiperiodic solution is supercritical:

N1
25

b02b

b1a1
, ~4.31!

as can be verified in Fig. 14.
At lower values ofb a new commensurate frequency a

pears atvL5v26v1 . At b50.0519,v andv1 are exactly
rational with a winding number 7/43 or@6,7#. When
b50.051 76 the torus breaks immediately after the appe

ance of a new incommensurate frequencyv2, 1
2 vL and the

Poincare´ section becomes chaotic~temporal chaos!. When
we further decreaseb, one eigenvalue again becomes neg
tive and we find a newT2 torus atb50.0516. The system
once more becomes chaotic atb<0.0515. This behavior is
in agreement with the picture found in Sec. IV B~see Fig.
11!.

The bifurcations of the system were also checked
a50.45 and a variant of the above scenario was found
period-2 solution appears atb50.0316. A T2 torus is ex-
cited atb50.0305. The torus undergoes a period-doubl
bifurcation at b50.0288 and it becomes chaotic
b50.028 75. An ordered torus reappears atb50.0287 and
becomes again chaotic atb50.0286. Notice that the station
ary solution itself is stable down tob50.029 ~hysteresis!.
Using the two control parametersb and a, we can find a
variety of winding numbers: For example, whenb50.075
anda51.9, we find a mode locking with a winding numb
of 1/5. One can study the quasiperiodic band in the~a,b!
parameter space~see Fig. 15! and look for universal proper
ties @24–26#.

E. Summary

In this section theUII family of large-scale solutions wa
introduced and discussed. We found two stationary soluti
that were denotedUc(x) and Ud(x). These solutions are
stable whenb.bc . As b is decreased, the stationary sol
tions undergo a series of Hopf bifurcations and become
riodic, quasiperiodic, and then temporally chaotic. The fi
Hopf bifurcation is subcritical; the stationary solution
stable for a band of parameters below the line of transition
the periodic orbit. We interpret this scenario as aRuelle-
Takens phenomenon@27,28#. The time-dependent solution
are composed from patches of short wavelength, left-
right-traveling waves, separated by sources and sinks,
background of the stationary long-wavelength solution. N
tice that at any given values of the control parameters th
are two distinct ordered or temporally chaotic trajectori
r-

-

t
A

g

s

e-
t

o

d
a

-
re
.

When b is lowered further we expect two things to ha
pen: ~i! The number of unstable directions grows and
b*0 it is proportional to the effective system sizek1

21 and
~ii ! the amount of phase space that is visited by the cha
trajectories is expected to grow asb is decreased.

V. QUALITATIVE FEATURES
OF THE SPATIOTEMPORAL COMPLEX DYNAMICS

This section, which is the least rigorous in this pap
offers a qualitative description of the dynamics that leads
spatiotemporal complexity. We use here all the results fou
in Secs. III and IV to portray the itinerary of a typical orbit i
functions spaceU. In addition, we describe below additiona
numerical experiments to support the qualitative conce
that are offered. We begin with such a numerical descript
of a typical trajectory.

A. Transition to space-time chaos

To obtain a global picture of the structure of the pha
space we need first to choose how to represent trajectorie
our infinite-dimensional phase space. Two useful coordina
that give comprehensible projections can be constructed.
first is U(k0), the amplitude of thek0 mode. The second is
the square root of the ‘‘energy’’ of all the other modes in t
unstable region

L5A (
0,k,1,kÞk0

U~k!2. ~5.1!

The reduction to two coordinates is done because of gra
cal convenience. However, the choice is also justified by
findings of the earlier sections; theUI family emanates from
the single unstable mode atk0 . The modes withk.1 are
slaved to the modes in the sum~5.1!.

FIG. 15. Schematic phase diagram of thetwo-mode modelat
k050.93 andk150.06. The solid lines show bifurcations ofUc(x)
from a fixed point to a periodic orbit,T2 torus, temporal chaos, an
space-time chaos. The dashed lines refer to the same bifurcatio
Ud(x). Notice thatUd(x) does not exist to the left of the leftmos
dashed line.
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In this representation the stationary solutionUh(x) @Eq.
~3.1!# is located on the abscissaL50. We saw in Sec. III A
that the stationary cellular solutionUh(x) is stable when
a.aext. Numerical experiments show that whe
b,bmin(a;k0,k1), a spatiotemporal chaotic phase exists b
side the ordered phaseUh(x). In Fig. 16 one can see the
results of four runs with different initial conditions: Two
trajectories~a2 andb2! flow to the fixed pointUh(x), while
the other two exhibit spatiotemporal chaotic behavior. The
examples are generic. There are two gross ‘‘basins of attr
tion’’ here. One region flows to the fixed pointUh(x) and
the other region spawns chaotic orbits. Further detail
analysis of the second region reveals the existence of ot
small basins of attraction of additional fixed points dispers
inside it. These will be referred to below.

To establish the existence of sharp separatrix in this sp
we chose a random direction in phase spaceR̂ and started the
orbit from the ‘‘noisy initial condition’’ chosen as a linear
combination of the cellular solution and the random directio

U~k,t50!5AhUh~k!1ArR̂. ~5.2!

FIG. 16. Reduced representation of four trajectories in the pha
spaceU. The abscissa isU(k0), the amplitude of thek0 mode. The
ordinate is defined in Eq.~5.1!. The initial conditionsa2 and b2

flow to the fixed pointUh(x) (L50), while a1 and b1 become
chaotic.k050.93,a50.3, andb50.
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The model consisting of Eqs.~2.2! and~2.10! andb50 was
then integrated in time and we checked whether the cha
or the ordered phase was obtained. We repeated the inte
tion for a set of initial conditions, different values ofAr ,
fixed value ofAh , and various values of the system sizeL.
Notice that the hyperplaneU(k0)50 is a critical plane, i.e.,
when the initial conditions areAh.0 @Ah,0#, then the tra-
jectory first grows in theU(k0).0 @U(k0),0# half plane, as
can be seen in Fig. 16. The results of the numerical exp
ments are shown in Fig. 17. We see that there is a sh
phase transition between the ordered and chaotic phases
also see that belowa.0.25 the cellular solution is unstable
This is in agreement with the stability matrix resu
aext50.2475~at k050.93;, see Fig. 3!. Aboveaext the tran-
sition line scales like

Ar5a~L!~a2a0!g. ~5.3!

The transition line and the phase-space trajectories sug
that there is an unstable fixed point in the phase space w
stable manifold separates the basin of attraction of the fi
point Uh(x) and the chaotic orbit. Actually, we found in th
numerical experiments a family of such fixed points. The
biperiodic fixed points are characterized by two wave nu
bersk0 and its subharmonicQ5k0 /s ~sPZ, Q.12k0!. An
example withs511 is shown in Fig. 18. The exact biper
odic solutionsUh

(s)(x) that we found in Sec. III E can be
realized in a numerical experiment only if the basic spa
frequency of the solutionk0 /s is a multiple of the smalles
frequency 2p/L. Generally this is not the case and the n
merical integration shows only a close approximation
Uh

(s)(x). An example of this finite size effect may be seen
Fig. 18. The stationary solutionUh(x) hask0 /Dk531 cells.
The spectral picture shows a period-11 solution, but the lo
est excited spatial mode is mode numberb31/11c52. Accord-
ingly, the real-space picture shows two basic blocks. A fix
point with a specific value ofs is chosen in the numerica
integration due to the existence of aQ component in the
initial conditions.

The biperiodic solutionsUh
(s)(x) have only one unstable

direction. These solutions are the unstable fixed points
have been recognized in the numerical experiments.

se
FIG. 17. Phase transition between chaotic and ordered phases as a function of the initial condition@Ah52; see Eq.~5.2!# for different
values ofa andL52p/Dk. k050.93 andb50. Right: fit of the points in the rangea,0.6 to the lines:Ar

1.45a(a2a0).
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FIG. 18. Modulated cellular fixed point (s511). Left: spectrum of the solution. Right: phasew(x) ~full line! and local wave number
~dotted line! ~numerical experiment atk050.93,a50.3, andDk50.03!.
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the
codimension-one stable manifold of these solutions is
separatrix between the basins of attraction of the orde
phase and the disordered phase.

The size of the basin of attraction ofUh(x) is determined
by the phase-space distance betweenUh(x) and Uh

(s)(x).
Therefore, the value ofg in Eq. ~5.3! is determined by thea
dependence of the largest coefficientbn/s , where n is an
integer between 1 ands21. If we test this dependence i
various solutionsUh

(s)(x) we find that above the immediat
vicinity of the bifurcation point, the largest coefficient scal
like (a2ac)

g whereg is in the range 0.5,g,1 and it takes
different values in different biperiodic solutions.

A solution U(x) in the vicinity of Uh(x) can be modeled
by

U~x!5Uh„x1w~x!…1W„w~x!…. ~5.4!

Close toUh(x), w(x) is small and is slowly varying in spac
such thatw(x)5ef(ex) and W„w(x)…;e2, where e is a
small parameter. When the amplitude ofw(x) is small the
solution relaxes towardsUh(x). In Fig. 18 we see the devia
tion of the local wave numberdw(x)/dx from k0 exactly at
the biperiodic fixed point. When the local wave number
too large, the solution becomes locally unstable. This lo
wavelength phase instability is an Eckhaus-type instab
@29# and is known in other systems@30,31# that exhibit simi-
lar phase modulation@32,16#. When the local phase devia
tion becomes larger, the amplitude ofU(x) becomes smalle
and topological defects are nucleated at the points where
local wave number is too large. Immediately after the defe
are created, the system leaves the vicinity of the modula
cellular fixed point and flows towards the spatiotempo
chaotic attractor, as can be seen in Fig. 16, where the be
ior of the system can no longer be described by phase
namics around the cellular solutionUh(x). In other words,
the spatiotemporal chaotic behavior cannot be thought o
disordered time behavior of the cellular solution.

B. Complex dynamics

In this subsection we offer an image of space-time ch
that at least for the type of models studied here can be
derstood as an orbit in function space that is organized by
families of stationary solutions that we identified. In doing
e
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ts
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e

we do not claim that we have identified all the stationa
solutions, but we believe that we have control of some p
tinent families that suffice to characterize some global f
tures of the flow. The usual signatures of space-time ch
~like topological defects! will result naturally from this dy-
namics. We assemble now all our findings to suggest a s
matic presentation of the phase spaceU; see Fig. 19. In Sec
IV D we found that the long-wavelength solutions of theUII
family become temporally chaotic through a series of Ho
bifurcations. The chaotic attractor stays close to aT2 torus
and it involves only few spatial components that have
erratic modulation in time. Although every component is
complicated function of space with a wide spatial spectru
nonetheless we are still in the regime of temporal chaos.
space-time picture is one of phase turbulence around on
the long-wavelength solutionsUc(x) andUd(x).

In Sec. III we studied the short-wavelength stationary
lution Uh(x) and a set of biperiodic solutionsUh

(s)(x) that
bifurcate fromUh(x) on the neutral curve. The basin of a
traction of the long-wavelength stationary solutionsUc(x)
andUd(x) and their time-dependent descendants is confi
by the codimension-one stable manifold and the o
dimensional unstable manifold of the biperiodic fixed poin
Uh

(s)(x), as can be seen schematically in Fig. 19.
TheUI family of stationary solutions has been consider

in Sec. III B. Numerical examination of these fixed poin
shows that most of them are contained within the basin
attraction of theUII family of solutions~the hatched area in

FIG. 19. Schematic presentation of the phase spaceU. The torus
in the center encircles a stationary fixed point~Uc or Ud!. Its basin
is bounded by the one-dimensional stable manifold and the unst
manifold of the biperiodic fixed points, represented here by
saddle fixed pointUh

(s) .
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FIG. 20. Left: typical chaotic orbit atb50. ~The axes are defined in Fig. 16.! Middle: time-averaged spatial spectrum of the chaotic or
Right: enlargement of the long-wavelength region.k050.93 anda51.2.
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Fig. 19!. WhenDk is small enough, they are unstable~saddle
fixed points!. In addition to the unstable stationary solution
there are also temporally periodic solutions inside the ba
of attraction ofUII . For example, we found a stable period
orbit atDk50.037,k152Dk, k0525Dk, b50.03, anda in
the range 1.8–1.9. This orbit, similarly toUp(x,t) @Eq.
4.21#, is composed of a stationary part and segments of l
and right-traveling waves with temporally modulated amp
tude. At low values ofDk these objects lose stability.

Whenb is decreased below the point of transition to te
poral chaos~or a is increased!, the ‘‘size’’ of the chaotic
attractor around the torus becomes bigger@Eq. ~4.31!# until
the system reaches a critical point where the chaotic attra
suddenly widens as it approaches the stable manifold of
of the saddle objects.~For k050.93,k150.06, anda51.2 it
happens atb;0.048 55!. The trajectory spends long inte
vals of time in the metastable chaotic attractor near the to
until it is attracted towards the saddle; it then bursts out
stays close to the saddle for a short period of time bef
returning to the former attractor, guided by the unsta
manifold of Uh

(s)(x); it remains there for a long time an
then repeats the cycle.

The time interval between bursts is randomly distribut
but its average length becomes shorter asb is decreased
This phenomenon, where the chaotic attractor loses stab
when it approaches an unstable~saddle! fixed point ~or a
periodic orbit! that is inside the attractor’s basin and collid
with it through a heteroclinic tangency, was called aninte-
rior crisis and the chaotic temporal behavior was call
crisis-induced intermittency@33#.

The space-time picture resulting from the intermittent h
eroclinic connection between the temporally chaotic attrac
and the saddles inside the basin is that of spatiotemp
chaos. The intermittency produces low-frequency noise
the temporal spectrum. Due to the parity symmetry, for a
saddleUu(x,t) in R ~see Fig. 19! there is a counterpar
2Uu(2x,t) in L . Accordingly, the trajectory will have the
form of a doubly heteroclinic orbit as it wanders arou
Uu(x,t), the torus, and2Uu(2x,t). As b is decreased fur-
ther the chaotic trajectory will discover more and mo
saddle objects inside its basin of attraction. A typical traj
tory shape is seen in Fig. 20.
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Due to the translation symmetryUc(x1L/4) is also an
antisymmetric fixed-point solution of the model equation.
low values of b the chaotic tori aroundUc(x) and
Uc(x1L/4) merge. At even lower values ofb, this orbit is
merged with the one aroundUd(x) andUd(x1L/4). As the
trajectory meanders between these tori, one cannot recog
the ‘‘footprints’’ of the fixed pointsUc(x) andUd(x) in the
real-space picture, yet the averaged spectrum of the cha
attractor retains thek22 long-wavelength spectrum of th
stationary solutions as can be seen in Fig. 20.

C. Explicit example

The aim of this subsection is to provide an explicit e
ample for the picture that we offered for the nature of spa
time chaos. We consider a situation that allows following t
orbit as it passes close to specific stationary unstable s
tions. The system undergoes bifurcations, as a function
parameter, of the type discussed in the preceeding sub
tion, leading to increasing complexity in the space-time d
namics.

To allow detailed understanding of the dynamics we si
plify the situation by having only few modes in the rangek
P(0,1). We choose arbitrarily the parametersDk50.17,
k055Dk, and k152Dk. With these parameters there a
precisely five unstable modes in our model. To view t
trajectories we project them on the two-dimensional pla
(U1 ,U5), where Un denotes the amplitude of the mod
nDk.

At a50 the model equation possesses a long-wavelen
solution. An approximation of this solution was calculated
Sec. IV A and denoted asUc(x). This approximation is valid
as long asb/k1>1. At lower values ofb the approximation
breaks down. However, in the present example, in wh
only a few unstable modes exist, one can calculate this s
tion explicitly using a truncation method of the type em
ployed in Sec. III B. Whena increases this stationary solu
tion becomes time periodic via a Hopf bifurcation. Th
stationary and the periodic solutions belong to the family
solutions of the second kind that was denoted asUII .

In addition, for b50 the model equation has a shor
wavelength solution denoted asUh(x) and the subharmonic
solutionsUh

(s)(x) ~cf. Sec. III E and Fig. 8!. For our example
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FIG. 21. ~a!–~c! Reduced representation of various trajectories. Insets: spatial solutions at some emphasized points along the tra
shown in the (U,U8) plane.~a! The periodic trajectoryUh

(5)(x,t) ~a50.288,b50.009 32!. Inset: a point close toUh
(5)(x). ~b! Two periodic

trajectories that belong to theUI family ~outer,a50.22, andb50.0105; inner,a50.14 andb50.0105!. Inset: ap54 point.~c! Trajectory
that connects the three solutions of theUI family. ~d! The time trace ofU(K1) ~a50.22 andb50.018!. Inset: ap56 point on the inner
trajectory of~b!.
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the only realizable solutions areUh
(5)(x). The pair of solu-

tionsUh
(5)(x) andUh

(5)(x25p/k0) are unstable. However, a
a'aext ~recall Sec. III A! there exists a stable periodic s
lution that passes near this pair of unstable stationary s
tions. The projection of the trajectory of this solution
shown in Fig. 21~a!. For future reference we denote this s
lution as Uh

(5)(x,t). In terms of our general notation thi
time-dependent solution belongs to the family of solutions
the first kindUI . The solutionUh

(5)(x,t) remains available
for a finite range ofb values.

As explained in Sec. III B, theUI family contains infi-
nitely many solutions, all of which are unstable atb50. For
b.0 there exists a class of solutions that become sta
These are solutions whose spatial periodicityp is harmonic
in k1 ~i.e., pDk/k1 is an integer!. In the current case this
condition is obtained for various values ofp. For example,
when p54 the stationary solutionR1L0R0L1 is stable at
a5b&0.001. Note that this is one of the class of fourp54
solutions that appear in Eq.~3.22!. At higher values ofa
these solutions become time periodic. At even larger val
of a they become unstable.

We describe now a path in the~a,b! parameter space tha
begins at a50.28, andb50.0105. At these values th
temporal-periodic solutionUh

(5)(x,t) is the only stable one
As a is decreased, the solution goes through dynamic bi
u-

f

le.

s

r-

cations and new frequencies appear in the temporal s
trum. In addition, there existstructural bifurcations, where
the phase-space trajectory changes its shape discontinuo
These bifurcations are understood as a consequence o
appearance of a connection between two unstable soluti
Uh

(5)(x,t) and one of thep54 class. The four members o
this class interact withUh

(5)(x,t) at different sectors of the
~a,b! plane, causing sharp changes in the character of
trajectory. At some values ofa the new time-periodic orbit is
stable. A typical example of such a trajectory is seen in F
21~b!. At other close values ofa the trajectory acquires
complex dynamics. Changing the parameters further
can discover orbits whose symbolic notation increases
complexity. For example, in Fig. 21~c! we see a trajectory
that passes near a solution whose symbolic word
R0L0R0L1R1L0R0L0 . It is obvious that the orbit meander
between the three solutionsUh

(5)(x,t), R1L0R0L1 , and the
last one. The changes in the apparent spatial patterns o
time-dependent solution become more and more comple
it passes near the various unstable fixed points that are i
tified in this example and shown explicity as insets in F
21. A time series of the total energy in this orbit is seen
Fig. 21~d!. The orbit exhibits the bursts that were discuss
in the previous subsections. There is no limit to how we c
make the discussion more complex by choosing more mo
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FIG. 22. Left: reduced representation of a trajectory that converges to the cellular fixed point.~The axes are defined in Fig. 16.!
«50.01,k050.93, anda50.6. Right: convergence time as a function of«. We did not find convergence for«<0.001.
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in the window kP(0,1). We explicitly gave the exampl
such that the complexity can be unfolded. It is our ma
proposal that the space-time complexity is in principle d
scribable in this manner.

Until now the fundamental solutions belonged to one fa
ily UI . Continuing along our path in parameter space,
encounter new solutions that twist around members of
two different familiesUI andUII . These new solutions ca
be found by either decreasinga or increasingb.

Finally, we note that this type of solution is generic in t
sense that it exists for a wide range of parameters in
~a,b! plane. It undergoes additional dynamic bifurcations
the parameters are changed further into the space-time
otic phase. The nature of the orbit as a mediator betw
different types of fundamental solutions remains the sam

D. Does sustained chaos exist?

In the two-mode model the size of the attractor is a fu
tion of a andb and therefore there is a functionac(b) such
that chaos appears to exist fora,ac(b). The line represent-
ing this function is the rightmost line in the phase diagra
~Fig. 15!. Numerical experiments indicate that to the right
this line space-time chaos is a transient phenomenon.

Indeed, it has been suggested before@4# that all the ‘‘cha-
otic’’ states of the Kuramoto-Sivashinsky equation are onl
long-lived transient that always relax to a stationary cellu
solution. In our terminology, this means that there is no se
ratrix between the chaotic part of the phase space and
cellular fixed pointUh(x), i.e., the chaotic part lies within
the basin of attraction of the cellular fixed point.

Our models allow us to shed some light on this import
issue and to show in which sense it can be assessed qu
tatively. We will show that for strong linear dissipation, th
chaotic state is indeed transient. To this aim consider
model

L~k!55
0, k50

2«, uku,1, kÞ0,6k0

a, k56k0

k22uku4, uku>1.

~5.5!

The « term («.0) introduces dissipation at long wave
lengths (0,k,1) but leaves the model Galilean invarian
-

-
e
e

e
s
ha-
n

.

-

f

a
r
a-
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t
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e

Starting from the initial conditions~5.2!, the equation was
integrated and the trajectory followed. A typical trajecto
and convergence times for various values of« are shown in
Fig. 22. We found that for«.«c50.001 the trajectory al-
ways converged to the time-independent cellular solut
Uh(x). For 0<«<«c the trajectories did not converge unt
at leastT510 000. These results indicate that when there
enough dissipation in the long-wavelength region the cha
state is indeed transient.

This phenomenon is common to situations where th
exist simultaneously a stable fixed point@Uh(x)#, a chaotic
attractor, and a saddle fixed point@Uh

(s)(x)#. The boundary
of the basin of attraction of the attractor is the stable ma
fold of the saddle point~see Fig. 19!. As « is increased from
zero, a critical value«c is reached where the chaotic attract
collides with its basin of attraction~the stable manifold of
the saddle fixed point! through a heteroclinic tangency. Fo
values of« above the critical value the chaotic attractor d
appears. This phenomenon is calledboundary crisis@33#.
We conclude that our model exhibits sustained chaos as
as the size of the chaotic attractor is not too big, i.e.,
attractor does not collide with the edge of its basin of attr
tion.

These results indicate that even at a finite but small di
pation, the chaotic attractor may not collide with the basin
the cellular fixed point. Numerical experiments of cour
cannot rule out the possibility of an extremely long transie
However, all simulations done to the left of the critical lin
in Fig. 15 produced sustained chaos for arbitrary simulat
times.

VI. SUMMARY

The main point of this paper is that spatiotemporal co
plexity can be discussed, at least in the class of Galil
invariant models studied above, in qualitative terms not
like those of dynamical systems. Usually partial different
equations give rise to such complex dynamics that it is h
to disentangle the behavior into its elements. For this rea
we opted in this paper to introduce a simple enough mo
with only two linearly unstable modes, whose dynamics
function space could be analyzed relatively easily. One
portant ingredient in our analysis is the calculation of t
stationary solutions. There are infinitely many such so
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tions, but we have been able to classify many of them
show that their number grows exponentially as a function
the size of the system, at least in the scaling limit of sm
exiting modes.

There are regions of parameter space for which all
stationary solutions in a given portion of function space
unstable. This does not mean, however, that they are i
evant for the dynamics. On the contrary, their neighborho
is repeatedly visited by the orbit in function space. The de
onstration of spatial complexity in terms of the topologic
entropy translated now to a statement about spatiotemp
complexity. The orbit in time as a function of time mak
nearby visits to infinitely many stationary solutions that a
all unstable. When the orbit comes very close to some s
tion the spatial function that is seen is very close to
stationary solution, but this changes in favor of another o
as the orbit nears another stationary solution, etc. Transit
between solutions of two different families that are quali
tively different, such as the families of the first and the s
ond kind discussed above, guarantee that the observed s
shape changes wildly while the orbit goes through its gy
tions. Clearly, when the orbit changes from the vicinity
the short-wavelength solutions to the vicinity of lon
wavelength solutions, the inevitable phase slips that are
quired form topological defects will appear. These are
consequences of the spatiotemporal complexity and not
versa@34#.
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APPENDIX A: STABILITY
OF THE CELLULAR SOLUTION

AND ITS DESCENDANTS

1. Stability analysis of the cellular solution

In order to check the stability of the cellular solutio
Uh(x) as a function of the parametersa and b @see Eq.
d
f
ll

e
e
l-
d
-

l
ral

u-
e
e
ns
-
-
tial
-

e-
e
ce

h
n-
e

~2.10!#, we introduce a small perturbatio
U(x,t)5Uh(x)1v(x,t). Linearizing Eq. ~2.2! gives the
equation forv(x,t):

] tv~x,t !5L@v~x,t !#1]x@v~x,t !Uh~x!#. ~A1!

Since Eq.~A1! is autonomous with respect to time, its sol
tion is of the formv(x,t)5eltv(x). The general solution of

v(x) can be written asv(x)5eiQxṽ (x) where QP@0,k0)

and ṽ (x) has the same periodicity asUh(x). Therefore, the
perturbationv(x,t) has the form

v~x,t !5elteiQx(
n

ivneink0x. ~A2!

Inserting this into Eq.~A1!, we obtain the linear equation
for the coefficientsvn :

lv l5L~ lk01Q!v l2~ lk01Q! (
n52`

`

al 2nvn , ~A3!

and accordingly the stability matrix reads

Sl ,n~Q!5
]v l

]vn
5d l ,nL~ lk01Q!2~ lk01Q!al 2n ,

l ,n52kmax,...,kmax. ~A4!

The stability matrix couples 2kmax/Dk modes. Using only
five modes (a22 ,...,a2) to calculate the stability of the cel
lular solution approximately, the matrix reads
special
ial
F L~22k01Q! 2~22k01Q!a21 2~22k01Q!a22 0 0

2~2k01Q!a1 L~2k01Q! 2~2k01Q!a21 2~2k01Q!a22 0

2Qa2 2Qa1 L~Q! 2Qa21 2Qa22

0 2~k01Q!a2 2~k01Q!a1 L~k01Q! 2~k01Q!a21

0 0 2~2k01Q!a2 2~2k01Q!a1 L~2k01Q!

G . ~A5!

The cellular solution becomes unstable when one eigenvalue of the stability matrix crosses the imaginary axis. Two
cases areQ50 andQ5k1 . At any other value ofQ the characteristic of the stability matrix can be written as a polynom
in a:

(
n50

5

f n~k0 ,Q;l!an50. ~A6!
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On the neutral curve~critical line! Re$l%50, f 0 is zero and hence we can find the neutral curvea5a1(Q;k0) by solving Eq.
~A6! to second order ina:

a1~Q;k0!.2
f 1

f 2
5

L~22k01Q!L~k01Q!L~2k01Q!

4@~2K0!221#~k01Q!@~2k01Q!L~22k01Q!2~22k01Q!L~2k01Q!#
. ~A7!
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We see thata is positive only when (12k0,Q,k0). We
conclude that~i! the system is stable against perturbations
the rangeuQu,12k0 and ~ii ! a1 has an extremum value
i.e., the system is stable against any perturbation w
a.aext(k0). The solution of Eq.~A6! to third order ina has
two branches where one branch behaves like the sec
order solution and there is a gap between its maximum
the minimum of the second branch at

a2~Q50;k0!.2k0
2@~2k0!221#. ~A8!

Our basic model is invariant under parity:Q→2Q. Since a
2Q perturbation is equivalent to ak02Q perturbation, the
neutral curve must be symmetric aroundQ5k0/2 and there-
fore aext5a1(k0/2;k0).

The stability matrix is singular whenQ50 since
L(6k01Q)5ad(Q). As a result, the matrix acquires a se
ond zero eigenvalue. This eigenvalue manifests the Gali
symmetry of the model equation.

Numerical calculation of the eigenvalues of the stabil
matrix for the QÞk1 case was done using seven mod
(a23 , . . . ,a3), as can be seen in the example in Fig. 3. Ad
ing higher modes to the calculation does not change the
tral curve significantly.

WhenQ5k1 one should add the contribution ofL(Q)5b
to the stability matrix. Numerical calculation shows that t
eigenvalues are in the negative half plane, wh
a.a1(k1 ,k0) and b,b0(a;k1 ,k0). An example can be
seen in Fig. 3. We conclude that the fixed pointUh is stable
whena.aext(k0) andb,b0(a;k1 ,k0).

Before we continue, let us look at the behavior of t
eigenvalues of the stability matrix as a function of the tw
parametersa and Q (QÞk1). On the lineQ50 there are
two zero eigenvalues respecting the two symmetries of
model equation: translation and Galilean. Because of
translation symmetry there is a row of zeros in the stabi
matrix @S0,n(0)50# that contributes one zero eigenvaluel t .
This symmetry is continuous and whenQ deviates from
zero, l t follows Q continuously; firstl t becomes negative
and then it changes sign on the neutral curve. The sec
symmetry is Galilean symmetry. This symmetry yields a
other zero eigenvaluelg . However, this symmetry is dis
crete in our model and whenuQu>0, lg leaps to a negative
value of the order of2a and it stays negative for an
uQu.0.

2. Stability of the period-2 solution

The stability of the period-2 solutionUh
(2)(x) can be

tested using the same method that has been used to calc
the stability of the solutionUh(x). At the bifurcation point
the stability matrixS(2) can be written as a combination o
two uncoupled matrices
n

n

d-
d

an

s
-
u-

n

e
e

y

nd
-

late

Sm/2,n/2
~2! ~Q!5H Sm/2,n/2~Q! for m,n even

S~m21!/2,~n21!/2S Q1
k0

2 D for m,n odd

0 for otherwise,
~A9!

where S(Q) is the stability matrix~A4!. Accordingly, the
eigenvalues of the matrixS(2)(0) are the union of the set o
eigenvalues of the matricesS~0! and S(k0/2). S~0! has a
translation zero eigenvaluel t and a Galilean zero eigenvalu
lg ~see the preceding section!. At the same pointS(k0/2) has
only one zero eigenvaluel t . Whena is increased above th
bifurcation point~andQ50!, the degeneracy of the two zer
eigenvalues is removed and one of them becomes posi
When uQu is increased, the values of thelg change discon-
tinuously to a negative value whilel t changes its value in a
continuous way. The global stability picture ofUh

(2) is simi-
lar to that ofUh . In the (a,Q) parameter space there is
neutral curvea1

(2)(Q;k0), where the upper eigenvaluel t

crosses the imaginary axis. However, in contrast toUh ~Fig.
3!, the unstable region isabovethe neutral curve and there
fore Uh

(2) is unstable at any value ofa.
a1

(2)(Q;k0), like a1(Q;k0), has an extremum a
aext

(2)5a1
(2)(k0/4;k0). At that point, a secondary period

doubling bifurcation to a new solution Uh
(22)(x)

5(nibn/4e
i (n/4)k0x takes place. As withS(2) @Eq. ~A9!#,

at the bifurcation point the stability matrix of the ne
solution S(22) can be decomposed into four matrice
$S(2)@Q1n(k0/4)#,n50,1,2,3%. S(2)(Q) contributes one
zero eigenvaluel t , but it also contributes a positive
eigenvaluelg . Accordingly, beyond the bifurcation poin
there will be one positive eigenvalue and thesecondeigen-
value will cross the imaginary axis on the neutral cur

a1
(22)(Q;k0).

3. Stability analysis of the period-three solution

We will show here that the solutionUh
(3)(x) has zero

eigenvalues atac anda0 @see Eq.~3.43!#, as in transcritical
bifurcations of low-dimensional dynamical systems~ordi-
nary differential equations!. However, in contrast to low-
dimensional dynamical systems,Uh

(3)(x) is unstable at all
values of the control parametera. Like the stability matrix of
Uh(x) @Eq. ~A4!#, the stability matrixS(Q) at a pointa5â
is defined by

Sl ,n~Q!5d l ,nL~ lk0/31Q!2~ lk0/31Q!bl 2n~ â !.
~A10!

We also defineB5S(0). When â.a0 , Uh
(3) can be ex-

panded nearâ: Uh
(3)(a)5Uh

(3)(â)1(a2â)v. v is the solu-
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tion of the equationBn5b1 , whereb15„0,0,b1(â),0,0,...….
That equation has a solution only if the solvability conditi
b†b150 holds, whereb† is the zero left eigenvector ofB. If
B has a nontrivial zero eigenvector, then generically (b†)1
Þ0 and thereforeb†b15(b†)1b1(â)Þ0. Therefore, when
â.a0 , B(â) has a zero eigenvalue only at the bifurcati
point â5ac where (b†)150. Due to the parity symmetry
B(ac) has two zero eigenvectors@equivalently, atac , Uh(x)

is unstable to two perturbationsQ5k0/3 andQ5 2
3 k0#. The

two zero eigenvalues cross the imaginary axis in oppo
directions, as a function ofa2ac :

] Re$l1%

]~a2ac!
U

ac

.0,
] Re$l2%

]~a2ac!
U

ac

,0. ~A11!

Therefore,Uh
(3)(x) is unstable on both sides ofac .

When â5a0 the expansion of Uh
(3) is Uh

(3)(a)
5Uh

(3)(â)1(a2â)0.5v. Thenv is the solution of the eigen
value equationBn50 with the normalization condition
( lv11 l /3v2 l /35b1(â). Therefore, one eigenvalue ofB(â)
changes sign ata0 . Yet l2 is still positive ata0 and there-
fore Uh

(3)(x) is unstable. In addition to these two isolate
zero eigenvalues,S~0! has two zero eigenvalues at anya due
to the translation symmetry. One of the zero eigenval
stays away from zero whenQÞ0. We conclude that the
period-3 solutionUh

(3)(x), similarly to the period-2 solution
is unstable at any value ofa.

APPENDIX B: AN S5M 55 SOLUTION
OF THE UII FAMILY

We start by looking form55 solutions with the same
symmetry. We truncate the set of equations after 2(m21)
modes, assuming that the higher modes are much sm
than the first eight modes. To lowest order ina we assume
for these modes

bn/55HAa

k0
cn for n odd

a

k0
dn for n even,

~B1!

where thecn anddn are functions ofk0 only. The equations
for the 2

5th and 4
5th modes have three solutions:

c15~16) !c3 , c55c3 , ~B2a!

c3Þ0, c15c550. ~B2b!

Solution~B2b! is similar to solution~3.7! in the sense tha
its principal spatial frequency is notk0 but 3

5 k0 . We will
ignore that solution for the time being. If we assum
c7!cn(n51,...,5), then the equations for the65th and 8

5th
modes give

d8L85
d6L6

3

2
6)

5~c3!2, ~B3!

where
te

s

ler

Ln[LS n

5
k0D Y n

5
k05S n

5
k0D2S n

5
k0D 3

. ~B4!

Now we substitute Eq.~B3! into the equations for the15th,
3
5 th, and5

5th modes and we get a system of three equation
solve:

S 26) 2 1

6) 2~16) ! 2~11H !

1 16) 2~16)1H !
D S d2

d4

d6

D 5S 0
0
1
D ,

~B5!

where the value ofH is equal to

H5
1

3

2
6)

L6

L8
. ~B6!

Substituting the solution of Eq.~B5! into Eq. ~B3! deter-
mines the numerical values of thecn . Now we can calculate
d7 from the equation for the75th mode and check that it is
indeed negligible. Like them53 example, which has a so
lution only for k0.3/4, Eq.~B5! has a solution only when
L6 is positive, i.e.,k0.5/6.

The two solutions found are shown in Fig. 5. Simil
m55 solutions exist fors53 ands51. The only difference
is on the right-hand side of Eq.~B5!, which is ~0,1,0! for
s53 and~1,0,0! for s51. No solutions of that type exist fo
s54 ands52.

In addition to the two period-5 solutions that were foun
there are two additional solutionsU(x) andŪ(x) that can be
paired such thatR2@U(x)#5Ū(x). We will assume now that
their scaling is

bn/m5a1/21~1/2!b~ unu21!/mccn . ~B7!

The lowest-order equations for theb1/5,...,b4/5 modes have a
solution

b2/55&b1/5, b3/55
1

&
b1/5,

b4/552b1/5, b5/55S 11
1

&
D b1/5. ~B8!

The lowest-order terms in the nonlinear part of the equat
for the b5/5 mode are

b1/5b4/51b2/5b3/5. ~B9!

According to the scalingAnsatz ~B7!, these terms are o
ordera, while the linear part is of ordera3/2. However, by
virtue of the relations~B8! the expression~B9! is exactly
zero. Hence the amplitude of the solution is determined
the next-order terms in the equation for theb5/5 mode:
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b6/51&b7/51
1

&
b8/52b9/51S 11

1

&
D b10/5

52S 11
1

&
D a

k0
. ~B10!

The equations of theb6/5,...,b10/5 modes, to first order ina,
give

b6/552S 522&

4 D 1

L6
b1/5

2 , b7/552S 11
1

&
D 1

L7
b1/5

2 ,

b8/552S 11
1

&
D 1

L8
b1/5

2 , b9/55S 11
1

&
D 1

L9
b1/5

2 ,

b10/552S 312&

4 D 1

L10
b1/5

2 , ~B11!

where Ln is defined in Eq.~B4!. Now we substitute Eq
~B11! into Eq. ~B10! and we find two solutions forb1/5:

b1/556AC

k0
2 a, ~B12!

where the constant C is a linear function of

1/L( 6
5 k0) ,...,1/L( 10

5 k0). This confirms theAnsatz~B7!.
In this section we found two solutions fors5m55. For

anys smaller thanm, Eqs.~B8! and~B11! still hold because
they solve the five first-order equations for the mod
b1/5,...,b5/5. The only difference is in theO(a3/2) equation
for the b5/5 mode@Eq. ~B10!#, which should be replaced b
an equivalent equation for thebs/5 mode. Accordingly, the
solution ~B12! holds for anys<5, while the value of the
constantC depends ons.

APPENDIX C: EXISTENCE OF SOLUTIONS

The vectorc @see Eq.~3.13!# defines anm-dimensional
Euclidean subspace of the function spaceU. We denote byC
the (m21)-dimensional unit sphere inRm. The bilinear
equation

f l~c;m!50 ~C1!

does not depend on the magnitudeucu. Therefore, its solution
is a point on the sphereC. This means that apparently E
~C1! hasm conditions but onlym21 degrees of freedom
However, as we will see momentarily, them equations
f l(c;1)50 are not independent. Let us examine the sca
product

~]xU !f~c!5(
l

lc l(
i , j

ciM i j
l cj . ~C2!

By renaming the indices, this quantity is equal to
s

r

1

3 (
i , j ,l

cicjcl~ lM i j
l 1 iM l j

i 1 jM il
j !

5(
i , j ,l

cicjcl@~ l 2 i 2 j !d i 1 j ,l2~ l 2 i 1 j !d i 2 j ,l

2~ l 1 i 2 j !d2 i 1 j ,l #50.

Therefore, them components off(c;1) are not independent
So atm51 Eq.~C1! hasm21 degrees of freedom andm21
conditions to satisfy.

The quadratic formfm(c;0) is identically zero. It is easy
to see that them21 quadratic formsf l(c;0), l ,m, are
indefinite and therefore every equationf l(c;0)50 has a
non-trivial solution. Every quadratic equationf l(c;m)50
can be reduced by an orthogonal matrixP to the form

(
i 51

h

l i c̃ i
22 (

i 5h11

r

l i c̃ i
250, ~C3!

where all thel i are positive,c̃5Pc, r is the rank of the
matrix M l(m), and 1,h,r . One can see that the solution o
Eq. ~C3! is an unbounded (m21)-dimensional object in the
Euclidean subspaceRm composed of one or more sheet
which passes through the origin, and therefore must inter
C along (m22)-dimensional closed hyperlinesHl . The so-
lutions of f(c;0)50 are the intersections of them21 hy-
perlines Hl , l ,m, which define a setP(0) of ~zero-
dimensional! points in C. Since we already discovered th
Eq. ~3.18! has 2m solutions, we conclude that the setP(0)
contains 2m points.

We want to check what happens to the solutions
f(c;m)50 as m deviates from zero. The quadratic form
fm(c;m) is equal tomfm(c;1) and thereforefm(c;m) is not
identically zero whenm.0. However, we know that atm51
the set of equationsf(c;1)50 are not independent. There
fore, if there is a solution to them21 equationsf l(c;1)50,
l ,m, and cmÞ0 then it must also solve themth equation
fm(c;1)50. So if we have a solution to them21 equations
f l(c;m)50, l ,m, at anym, andcmÞ0, then we are guar-
anteed that it solvesf(c;m)50 at m50 and 1. Accordingly,
we define the setP~m! as the set of solutions of them21
equationsf l(c;m)50, l ,m. ~Notice thatcm50 means that
the periodicityp is smaller thanm.! As m is changed, the
points of the setP~m! move on the sphereC and they can be
annihilated in pairs, as can be seen in Fig. 7.

APPENDIX D: PERIODIC SOLUTIONS

In Sec. IV C we found the following coupled ordinar
differential equations for the functionsm0(x) andm1(x):

]x@
1
2 m0

2~x!1um1~x!u21um1~2x!u2#1L@m0~x!#50,
~D1a!

]x~m0um1u!1 i ~k01]xf1!m0um1u1e2 if1Lk0
@m1#5 ivum1u,

~D1b!

wheref1(x) is the argument ofm1(x). The complex equa-
tion ~D1b! can be written as two real equations
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]x@m0~x!um1~x!u#1Re$C~x!e2 if1~x!%50, ~D1c!

@k01]xf1~x!#m0~x!um1~x!u1Im$C~x!e2 if1~x!%

5vum1~x!u. ~D1d!

The next step is to look for a solution that, similarly to th
fixed point solution, has the energies ofm0(x) and m1(x)
concentrated at low spatial frequencies. TheAnsatz for
m0(x) is

m0~x!5M0m̃0~x!1R0~x!,

m̃0~x!5sinS k1

2
xDwS k1

2
xD , ~D2!

where w(u) is defined in Eq.~4.3! and R0(x) is a small
deviation. Equation~D1b! becomes an eigenvalue equati
for m1(x):

L̃~M0!@m1~x!#5 ivm1~x!, ~D3!

where

L̃~M0![Lk0
1M0~]x1 ik0!m̃0~x!. ~D4!

Due to the Galilean symmetry, we expect to find le
traveling waves wherem0(x).0 and right-traveling waves
where m0(x),0. Hence we look form1(x) such that
um1(x)u@um1* (2x)u, where m0(x).0 and vice versa. So
the ansatz form1(x) is

m1~x!5M1m̃1~x!1R1~x!, ~D5a!

m̃1~x!5a1~x!eif1~x!dS k1

2
xD , ~D5b!

where R1(x) is a small deviation andd(u) is the double
periodic asymmetric rectangular wave

d~u!55
1 if

p

2
<u<p

1 if
3p

2
<u<2p

0 otherwise.

~D6!

We see that the points (k1/2)x5$0,p/2 ,p,3p/2%, where
um1(x)u5um1(2x)u, are sinks and sources of travelin
waves. In Fig. 12 we see the fieldm1(x) as it was measured
from the numerical integration@35#. In order to gain an ana
lytical understanding of the equations we must take a sim
Ansatzfor m1(x). We will use the simple analytical form

a1~x!511cosS k1

2
xDwS k1

2
xD , ~D7a!

f1~x!5F1a1~x!. ~D7b!

Now we will solve Eqs.~D1! in Fourier space by substitutin
the Ansätze ~D2!, ~D5!, and ~D7!, calculating the Fourier
transform ~see Appendix E!, and comparing terms of th
e

n

t-

ple

same spatial frequency. We will start with Eq.~D1c!. The
k50 mode of the derivative term is equal to zero and he
that mode must be zero in the Re$C(x)e2if1(x)% term. The
antisymmetric part of this term fulfills that condition triv
ally. The symmetric part accomplishes the zero condition
convolving all the Fourier modes in the intervalk5@0,3#.
Consequently, it is harder to analyze the symmetric part t
the antisymmetric one. Hence we will only examine the
tisymmetric piece.

Near k50 we can use the facts thatLk0
(k)!Lk0

(0)5a

@see Eq.~D4!# and thate2 if1(x) has only a few modes in
Fourier space to estimate the antisymmetric piece by

asym@Re$C~x!e2 if1~x!%#.asym~Re$Ck50e2 if1~x!% !

5aM1asym~Re$m̃1,k50e2 if1~x!% !.

~D8!

The Fourier transform of an antisymmetric function is pure
imaginary. Using the notationk5n(k1/2) we can rewrite the
antisymmetric piece of Eq.~D1c! in Fourier space

M0n
k1

2
Re$~m̃0um̃1u!n%.

1

2
aIm$m̃1,k50~e2 if1!n

1@m̃1,k50~e2 if1!2n#* %.

~D9!

Defining Cn andDn(F1) by

Cn[n~m̃0um̃1u!n , ~D10a!

Dn~F1![m̃1,k50~e2 if1!n1@m̃1,k50~e2 if1!2n#* ,
~D10b!

we can rewrite Eq.~D9! for any moden as

M0

k1

a
.

Im$Dn~F1!%

Re$Cn%
. ~D11!

In particular,

Im$D2~F1!%

Re$C2%
5

Im$D4~F1!%

Re$C4%
. ~D12!

Now we can solve Eq.~D12! numerically @36#, using the
Ansätze ~D2! and ~D7! to find F1 . A solution is

F152.77. ~D13!

Substitution of this result back into Eq.~D11! gives

M05
a

k1

Im$D2~F1!%

1/3p
5

a

k1
~3p!~0.019!. ~D14!

We turn now to Eq.~D1a!. We can rewrite it as

1

2
M0

2]x@m̃0
2~x!#1M0L@m̃0~x!#52]xS 1

2
R0

2~x!1M0m̃0R0

1Um1~x!U21Um1~2x!U2D . ~D15!
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At the onset of a periodic solution the right-hand side is ze
Using Eq.~E4!,

2 i
k1

8
M0

21 i
4bcM0

3p
50. ~D16!

So the onset of a periodic solution occurs at

bc5
3p

32
k1M0.0.0527a. ~D17!

This result is in accordance with the stability matrix estim
tion bc5(k1 /k0)a. The last step is to calculatev from Eq.
~D1d!. For smalln we can approximate it by

~k02k1!~m0um1u!n5vum1un . ~D18!

Equations~E6! and ~E7! for the n51 mode give

v5M0

k02k1

p22
. ~D19!

We can compare now the analytic results to a numer
simulation. With simulation parameters~k050.93,k150.06,
a51.2! we obtained

M0 v bc

analytic 3.6 2.74 0.064
numerical 3.8 2.87 0.0691

We see that although the estimate~D7! for m1(x) is crude,
the analytical results are close to the values from the num
cal integration.

APPENDIX E: FOURIER TRANSFORM
OF SOME RELEVANT FUNCTIONS

In the periodic solution the smallest spatial frequency
k1/2. Hence the only relevant spatial frequencies
k5n(k1/2).
.

-

al

ri-

s
e

w@~k1/2!x;q#:

An~q!5H 2
2

p
q, n50

2
2

np
sinFnS p

2
2q D G , nÞ0.

~E1!

d@~k1/2!x;q#:

An~q!55
1

2
, n50

2
i

np
cosFnS p

2
2q D G , n odd

2
i

np H cosFnS p

2
2q D G21J , n even.

~E2!

w@~k1/2!x;q#d@~k1/2!x;q#:

An~q!55
1

p
q, n50

2
1

np
sinFnS p

2
2q D G , n even

2
1

np H sinFnS p

2
2q D G1 i J , n5odd.

~E3!

m̃0~x!:
An~q!55
0, n50

6H i

p
q2

i

np
sinF2S p

2
2q D G J , n561

i

~n21!p
sinF ~n21!S p

2
2q D G2

i

~n11!p
sinF ~n11!S p

2
2q D G otherwise.

~E4!

m̃1~x!:

An~r,s,q!5(
m

S J̃2m~r,s!1
1

2
@ J̃2m21~r,s!1 J̃2m11~r,s!# DAn22m12

d

1(
m

S J̃2m11~r,s!1
1

2
@ J̃2m~r,s!1 J̃2m12~r,s!# DAn22m11

w•d . ~E5!

um̃1~x!u:
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An~q!55
1

2
2

1

p
sinS p

2
2q D , n50

7
i

p
cosS p

2
2q D1

q

2p
2

1

4p
sinF2S p

2
2q D G , n561

2
i

pn
cosFnS p

2
2q D G2

1

p~n21!
sinF ~n21!S p

2
2q D G

2
1

p~n11!
sinF ~n11!S p

2
2q D G

1H i

p S 1

n
2

1

n21
2

1

n11D , n even

0, n odd.

~E6!

m̃0~x!um̃1~x!u:

An~q!5
1

4 H 1

p F 21

n22 H cosF ~n22!S p

2
2q D G2dn,evenJ ~nÞ2!

1
1

n12 H cosF ~n12!S p

2
2q D G2dn,evenJ ~nÞ22!

1
2

n21 H i sinF ~n21!S p

2
2q D G2dn,evenJ ~nÞ1!

2
2

n11 H i sinF ~n11!S p

2
2q D G2dn,evenJ G ~nÞ21!

1
1

2i
~dn,22dn,22!1

2q

ip
~dn,12dn,21!J ,

dn,even[ H0,
1,

n odd,
n even. ~E7!
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